Daniëlle Schuman, M.Sc.

Daniëlle Schuman, M.Sc.

Lehrstuhl für Mobile und Verteilte Systeme

Ludwig-Maximilians-Universität München, Institut für Informatik

Oettingenstraße 67
80538 München

Raum

Telefon:

Fax:

Mail: danielle.schuman@ifi.lmu.de

I left LMU at 2025-08-31 and won’t check this mail address regularly. You can reach me at danielle [at] last_name [dot] de or via LinkedIn. Future publications won’t be listed here, have a look at my Google Scholar profile instead.

🔬 Research Interests

  • Quantum Computing
  • Quantum Optimization
  • Quantum Machine Learning (especially Quantum Boltzmann Machines)
  • Optimization Problems

🎓 Teaching

📚 Publications

  • Schuman, D., Seebode, M., Rohe, T., Mansky, M. B., Schroedl-Baumann, M., Stein, J., Linnhoff-Popien, C., Krellner, F. (2025). Quantum Boltzmann Machines using Parallel Annealing for Medical Image Classification. In: 2025 IEEE International Conference on Quantum Computing and Engineering (QCE), to be published. [📄 arXiv]
  • Schuman, D., Sünkel, L., Altmann, P., Stein, J., Roch, C., Gabor, T., Linnhoff-Popien, C. (2023). Towards Transfer Learning for Large-Scale Image Classification Using Annealing-based Quantum Boltzmann Machines. In: 2023 IEEE International Conference on Quantum Computing and Engineering (QCE). [📄IEEE Xplore , arXiv]
  • Nüßlein, J., Schuman, D., Bucher, D., Mohseni, N., Ghosh, K., O’Meara, C., Cortiana, G., Linnhoff-Popien, C. (2024). Towards Less Greedy Quantum Coalition Structure Generation in Induced Subgraph Games. In: 2024 IEEE International Conference on Quantum Computing and Engineering (QCE), in press. [📄 IEEE Xplore, arXiv]
  • Stein, J., Schuman, D., Benkard, M., Holger, T., Sajko, W., Kölle, M., Nüßlein, J., Sünkel, L., Salomon, O., Linnhoff-Popien, C. (2024). Exploring Unsupervised Anomaly Detection with Quantum Boltzmann Machines in Fraud Detection. In: Proceedings of the 16th International Conference on Agents and Artificial Intelligence (ICAART).[📄scitepress , arXiv]
  • Rohe, T., Schuman, D., Nüßlein, J., Sünkel, L., Stein, J., Linnhoff-Popien, C. (2024). The questionable influence of entanglement in quantum optimisation algorithms. In: 2024 IEEE International Conference on Quantum Computing and Engineering (QCE), 1, pp. 1497-1503. [📄 IEEE Xplore , arXiv]
  • Hein, D., Wiedemann, S., Baumann, M., Felbinger, P., Klein, J., Schieder, M., Stein, J., Schuman, D., Cope, T., Udluft, S. (2025). From Classical Data to Quantum Advantage – Quantum Policy Evaluation on Quantum Hardware. In: 2025 IEEE International Conference on Quantum Computing and Engineering (QCE), to be published.
  • Nüßlein, J., Sünkel, L., Stein, J., Rohe, T., Schuman, D., Feld, S., …, Linnhoff-Popien, C. (2025). Reducing QUBO Density by Factoring Out Semi-Symmetries. In: Proceedings of the 17th International Conference on Agents and Artificial Intelligence (ICAART). [📄scitepress , arXiv]
  • Stein, J., Poppel, M., Adamczyk, P., Fabry, R., Wu, Z., Kölle, M., Nüßlein, J., Schuman, D., Altmann, P., Ehmer, T., Narasimhan, V., Linnhoff-Popien, C. (2024). Benchmarking Quantum Surrogate Models on Scarce and Noisy Data. In: Proceedings of the 16th International Conference on Agents and Artificial Intelligence (ICAART). [📄scitepress , arXiv]
  • Kölle, M., Ahouzi, A., Debus, P., Çetiner, E., Müller, R., Schuman, D., & Linnhoff-Popien, C. (2024). Efficient Quantum One-Class Support Vector Machines for Anomaly Detection Using Randomized Measurements and Variable Subsampling. Springer Nature Computer Science, in press.
  • Kölle, M., Ahouzi, A., Debus, P., Müller, R., Schuman, D., Linnhoff-Popien, C. (2024). Towards Efficient Quantum Anomaly Detection: One-Class SVMs using Variable Subsampling and Randomized Measurements. In: Proceedings of the 16th International Conference on Agents and Artificial Intelligence (ICAART). [📄scitepress , arXiv]
  • Mansky, M. B., Nüßlein, J., Bucher, D., Schuman, D., Zielinski, S., Linnhoff-Popien, C. (2023). Sampling problems on a Quantum Computer. In: 2023 IEEE International Conference on Quantum Computing and Engineering (QCE). [📄IEEE Xplore , arXiv]
  • Müller, T., Schmid, K., Schuman, D., Gabor, T., Friedrich, M., Geitz, M. (2022). Solving Large Steiner Tree Problems in Graphs for Cost-efficient Fiber-To-The-Home Network Expansion. In: Proceedings of the 14th International Conference on Agents and Artificial Intelligence (ICAART), 3, 23-32.[📄scitepress , arXiv]

Abschlussarbeiten

Ich biete aktuell keine Betreuung von Abschlussarbeiten an. Bei Interesse an Abschlussarbeiten an unserem Lehrstuhl, informieren Sie sich bitte hier.