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What is Artificial Intelligence?
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6 AI and the Compute Method
1) “AI researchers have often tried to 

build knowledge into their agents,

2) this always helps in the short term, 
and is personally satisfying to the 
researcher, but

3) in the long run it plateaus and even 
inhibits further progress, and 

4) breakthrough progress eventually 
arrives by an opposing approach 
based on scaling computation by 
search and learning.”
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1) “AI researchers have often tried to 

build knowledge into their agents,

2) this always helps in the short term, 
and is personally satisfying to the 
researcher, but

3) in the long run it plateaus and even 
inhibits further progress, and 

4) breakthrough progress eventually 
arrives by an opposing approach 
based on scaling computation by 
search and learning.”

“The biggest lesson that can be read from 70 
years of AI research is that general methods 
that leverage computation are ultimately 
the most effective, and by a large margin.”
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9 The Power of Compute
“Since 2012, the amount of compute 
used in the largest AI training runs 
has been increasing exponentially 
with a 3.5 month doubling time 
(by comparison, Moore’s Law had 
an 18 month doubling period).”
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Progress in AI research
slows down.

New sources of
computation power

are discovered.

AI research becomes
exponentially more
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New AI algorithms
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are developed.
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12 The Power of Efficiency
“Compared to 2012, it now takes 44 
times less compute to train a neural 
network to the level of AlexNet (by 
contrast, Moore’s Law would yield 
an 11x cost improvement over this 
period). Our results suggest that for 
AI tasks with high levels of recent 
investment, algorithmic progress 
has yielded more gains than 
classical hardware efficiency.”
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Why Quantum AI?



17 Quantum Computing and AI

Quantum 
Computing

Artificial 
Intelligence

noisy for the foreseeable future needs randomness

circuits are hard to construct 
for new algorithms

can invent creative solutions 
for well-defined goals

can perform stochastic search 
(quantum annealing or QAOA)

uses stochastic search

operates on a multitude of possibilties to 
return a relatively short answer

could provide more 
computing power

always needs more 
computing power



18 Quantum Computing and AI
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What is Quantum Annealing?



21 Quantum Annealing

Specialized Hardware Using
Quantum(-ish) Effects

To Solve
Optimization Problems

Theory: Algorithm by Kadowaki and Nishimori

Implementation: Mainly D-Wave Systems
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23 Quantum Annealing
1) apply field strength

to single qubits

2) apply coupling strength
to couples of qubits

3) the universe minimizes total energy

4) measure

5) qubits assume state that minimizes
total energy
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32 QUBO
quadratic unconstrained binary optimization



33 QUBO
quadratic unconstrained binary optimization

NP-complete



34 Example: Graph Coloring

Connected Graph Set of Colors Colored Graph
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Quantum Annealing Approaches
for

Quantum AI
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39 Training a Support Vector Machine



40 Training an Archetypes Set
R-Package “archetypes” Our approach



41 Training a Neural Network
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43 Inference in Bayesian Networks



44 Inference in Bayesian Networks



45 Simulating the Game of Life

en.wikipedia.org/wiki/Conway%27s_Game_of_Life



46 Simulating the Game of Life

en.wikipedia.org/wiki/Conway%27s_Game_of_Life

Turing-complete



47 Simulating the Game of Lifeprobabilistic
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What’s Next?
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53 Challenges for Quantum AI

The
Feedback Loop

Replace the feedback loop around training entirely 
with a quantum algorithm. 
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55 Challenges for Quantum AI

The
Training Data

Provide means to process (the essence of) large 
amounts of data on quantum computers.

The
Feedback Loop

Replace the feedback loop around training entirely 
with a quantum algorithm. 



56 A Full Stack of Knowledge

QAI concepts

QAI algorithms

QAI applications

specialists
community

Analysis
Standardization

Implementation developers

Search & Order users

packaged
solution

www.planqk.de

Prof Dr. Dr. h.c.
Frank Leymann
Scientific Director



57 Challenges for Quantum AI

The
Training Data

Provide means to process (the essence of) large 
amounts of data on quantum computers.

The
Interfaces

Provide standardized interfaces that allow for dynamic 
combination of QAI components and (by extension) for 
experts of different fields to collaborate on QAI algorithms. 

The
Feedback Loop

Replace the feedback loop around training entirely 
with a quantum algorithm. 

Domain Analysis

AI Algorithms

Quantum Platform



58 The Best Quantum Algorithm?

1 Employ a dozen algorithmically trained physicists and 
(physically trained??) programmers.

2 They will find a better algorithm than the one you wrote 
that one night in total desparation.

3 That algorithm may not actually need to use any 
quantum hardware.



59 Challenges for Quantum AI

The
Training Data

Provide means to process (the essence of) large 
amounts of data on quantum computers.

The
Interfaces

Provide standardized interfaces that allow for dynamic 
combination of QAI components and (by extension) for 
experts of different fields to collaborate on QAI algorithms. 

The
Real Reason

The
Feedback Loop

Replace the feedback loop around training entirely 
with a quantum algorithm. 

1 Employ a dozen 
algorithmically.

2 They will find a 
better algorithm

3 That algorithm 
may not

Domain Analysis

AI Algorithms

Quantum Platform

Keep track of the source of observed improvements and 
use it wisely.
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