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What is Artificial Intelligence?



>Machine Learning




Thomas Gabor et al.
The Scenario Coevolution Paradigm: Adaptive Quality Assurance for Adaptive Systems.
link.springer.com/content/pdf/10.1007/s10009-020-00560-5.pdf
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> Machine Learning




°Al and the Compute Method

1) “Al researchers have often tried to
build knowledge into their agents,

2) this always helps in the short term,
and is personally satisfying to the
researcher, but

3) inthe long run it plateaus and even
inhibits further progress, and

4) breakthrough progress eventually
arrives by an opposing approach

based on scaling computation by -
Rich Sutton.

search and learning.” The Bitter Lesson.

www.incompleteideas.net/
Incldeas/BitterLesson.html




”Al and the Compute Method

1) “Al researchers have often tried to “The biggest lesson that can be read from 70
build knowledge into their agents, years of Al research is that general methods
that leverage computation are ultimately

2) this always helps in the short term,
) 4 g the most effective, and by a large margin.”

and is personally satisfying to the
researcher, but

3) inthe long run it plateaus and even
inhibits further progress, and

4) breakthrough progress eventually
arrives by an opposing approach

based on scaling computation by
Rich Sutton.

search and learning.” The Bitter Lesson.

www.incompleteideas.net/
Incldeas/BitterLesson.html
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Petaflop/s-day (Training)

5The Power of Compute
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Dario Amodei and Danny Hernandez.
Al and Compute.
openai.com/blog/ai-and-compute/




> The Power of Compute

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute

M ining

e Dropout

¢ DQN

“Since 2012, the amount of compute
used in the largest Al training runs
has been increasing exponentially
with a 3.5 month doubling time
(by comparison, Moore’s Law had
an 18 month doubling period).”

Dario Amodei and Danny Hernandez.
Al and Compute.
openai.com/blog/ai-and-compute/




19 Options for the Future of Al

Al research becomes
exponentially more
expensive.

Progress in Al research
slows down.

New Al algorithms New sources of
using less resources computation power
are developed. are discovered.




"TOptions for the Future of Al

Al research becomes
exponentially more
expensive.

Progress in Al research

slows down.
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New Al algorithms New sources of
using less resources computation power
are developed. are discovered.
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2The Power of Efficiency

44x less compute required to get to AlexNet performance 7 years later (log scale)
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“Compared to 2012, it now takes 44
times less compute to train a neural
network to the level of AlexNet (by
contrast, Moore’s Law would yield
an 11x cost improvement over this
period). Our results suggest that for
Al tasks with high levels of recent
investment, algorithmic progress
has yielded more gains than
classical hardware efficiency.”

Danny Hernandez and Tom Brown.
Al and Efficiency.
openai.com/blog/ai-and-efficiency/




13 Options for the Future of Al

Progress in Al research
slows down.

New Al algorithms
using less resources
are developed.
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Al research becomes

exponentially more
expensive.
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> Options for the Future of Al
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Why Quantum Al?



7Quantum Computing and Al

could provide more
computing power

always needs more
computing power

noisy for the foreseeable future needs randomness

can perform stochastic search

, uses stochastic search
(quantum annealing or QAOA)

can invent creative solutions
for well-defined goals

circuits are hard to construct
for new algorithms

11l

operates on a multitude of possibilties to
return a relatively short answer



¥ Quantum Computing and Al

Thomas Gabor et al.

The Holy Grail of Quantum Atrtificial
Intelligence: Major Challenges in
Accelerating the Machine Learning
Pipeline.

Proceedings of the IEEE/ACM
42nd International Conference on
Software Engineering Workshops.

p

| Algorithm/Task | QCplatform | Impl. available | NISQ | Quantum tasks in ML pipeline |
Variational quantum eigensolver [43] Gate model PennyLane [41] Yes Data/Domain, Use Policy
HHL [24] Gate model Qiskit [1] Unlikely [45] Data/Domain, Train
Clustering [6] Gate model - No? Data/Domain, Use Policy
Clustering [32] Gate model - Yes? Data/Domain, Use Policy
Quantum nearest-neighbor [52] Gate model - - Data/Domain, Use Policy
Recommendation system [28] Gate model - Unlikely [45] Data/Domain, Use Policy
SVM [25] Gate model Qiskit [5] Yes Data/Domain, Use Policy
SVM [54] Quantum annealing - - Data/Domain, Use Policy
QAOA [19] Gate model PennyLane [2] Yes Train '
QUBO / Ising spin glasses [23, 34] Quantum annealing D-WAVE [37] Yes Train
Quantum-assisted EA [30] Quantum annealing - - Train
Quantum BM [53] Gate model - Yes Train
Quantum BM [9] Quantum annealing - - Train
Autoencoder [47] Gate model [48] Yes Train
Autoencoder [29] Quantum annealing - - Train
Quantum GAN [17, 33] Gate model PennyLane [3] Yes Data/Domain
Quantum GAN [46] Gate model - Yes Data/Domain 2020
Quantum GAN [56] Gate model Qiskit [4] Yes Data/Domain ’
Quantum-enhanced RL [39] Quantum annealing - - Train
Quantum RL [18] Gate model - - Train, Use Policy
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What is Quantum Annealing?



Tadashi Kadowaki and Hidetoshi Nishimori.
Quantum annealing in the transverse Ising model.

21 Qu ant um An ne al i N g Physical Review E 58.5 (1998): 5355. )

Mark W. Johnson et al.

. . . R . Quantum annealing with manufactured spins.
Theory: Algorithm by Kadowaki and Nishimori Nature 473.7346 (2011): 194198,

Implementation: Mainly D-Wave Systems

Specialized Hardware Using To Solve
Quantum(-ish) Effects Optimization Problems



*2Quantum Annealing




23 Quantum Annealing

1) apply field strength

to single qubits

2) apply coupling strength

to couples of qubits

3) the universe minimizes total energy

4) measure

5) qubits assume state that minimizes

total energy




1) apply field strength to single qubits

2) apply coupling strength to couples of qubits
3) the universe minimizes total energy

4) measure

24 Qu a nt u m A n n eal i n g 5) qubits assume state that minimizes total energy




1)  apply field strength to single qubits

2) apply coupling strength to couples of qubits
3) the universe minimizes total energy

4) measure

25 Qu ant u m An n eal i ng 5)  qubits assume state that minimizes total energy
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6 Quantum Annealing

1)
2)
3)

5)

apply field strength to single qubits
apply coupling strength to couples of qubits
the universe minimizes total energy

measure
qubits assume state that minimizes total energy




1)  apply field strength to single qubits
2)  apply coupling strength to couples of qubits

2 Quantum Annealing




1)  apply field strength to single qubits
2)  apply coupling strength to couples of qubits

6 Quantum Annealing




3)  the universe minimizes total energy

2> Quantum Annealing

adiabatic guantum computing

----------------------------
o ‘e

add constraints
infinitely slowly
while adding
no energy
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3)  the universe minimizes total energy

Y Quantum Annealing

practical quantum annealing
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4) measure

3 1 Qu a n‘t u m A n n eal i n g 5) qubits assume state that minimizes total energy
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*2QUBO

quadratic unconstrained binary optimization
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>3 QUBO

quadratic unconstrained binary optimization

arg min
(QOr")(J’n—l)E{O)l}n
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>4 Example: Graph Coloring

Connected Graph Set of Colors Colored Graph




> Example:

Connected Graph

Graph Coloring

Set of Colors

Colored Graph

xl,r =1 xa,r =0 xs,r =0
X160 Xzg=1 X34=0
Hyp=0 Hp=0 Hzp=1



6 Example: Graph Coloring

n

QUBO = A Z(l — zn:xv,i)2 + A S: S:.Cliu,f,;.ilifu,z‘

veV 1=1 (u,v)EE 1=1

QUBO = {(0, 0): —1, (0, 1): 2, (0, 2): 2, (0, 3): 1,

xl,r
X < (0, 6): 1,
1 (1, 1): —1, (1, 2): 2, (1, 4): 1, (1, 7): 1,
X1ip (2, 2): —1, (2, 5): 1, (2, 8): 1,
X,, (3, 3): —1, (3, 4): 2, (3, 5): 2, (3, 6): 1,
- (4, 4): —1, (4, 5): 2, (4, T): 1,
20 (5, 5): —1, (5, 8): 1,
Xop (6, 6): —1, (6, 7): 2, (6, 8): 2,
.. (7, 7): —1, (7, 8): 2,
: (8, 8): —1}
)(31g
X3p




Quantum Annealing Approaches

for
Quantum Al
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*?Training a Support Vector Machine

2

O.
25 0
(c) qSVM#6
2
o| (. (e
25 0

(b) qSVMi1

2

0

(d) qSVM#16

Willsch et al.
Support vector machines on the D-Wave quantum annealer.
Computer physics communications 248 (2020): 107006.

)




Y Training an Archetypes Set

R-Package “archetypes” Our approach

20 -

13

Feld et al.
Approximating archetypal analysis using quantum annealing.
Proceedings of ESANN, 2020.




“Training a Neural Network
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42 Quantum Machine Learning
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“Inference in Bayesian Networks

\

v
KT
(o)

l

CAB | CBLA | AB,C | CAB | DB | DB | EACD | ECAD | ED,AC | F,E | FE | G,FD | F,GD | D,GF | GFD
CA,B -90 | 999 | 999 | 999 | -4 -4 -6
CB,A -89 999 | 999 -3 -3 -3
AB,C -87 | 999 -2 -2 -2
CAB -76
D,B -93 | 999 -3 -3 -3 -3 -3 -3 -3
DB -88
EA,CD -79 999 999
EC,AD -81 999
ED,AC -79 -3
F,E -92 | 999 -3 -3 -3 -3
FE -85
G,FD -87 999 | 999 | 999
F,GD -85 999 | 999
D,GF -85 | 999
GFD -64




* Inference in Bayesian Networks

CAB | CB,A [ AB,C [ CAB [ D,B | DB | EACD | EC,AD | EDAC | F,E | FE | G,FD | F,GD | D,GF | GFD
CAB | 90 | 999 | 999 | 999 | -4 | 4 6
cB,A 89 | 999 | 999 3 | 3 | 3
AB,C 87 | 999 2 | 2 | 2
CAB 76
D,B 93999 3 | 3 | 3 3 | 3| 3 | 3
DB 88
EA,CD 79 | 999 | 999
EC,AD 81 | 999
ED,AC 79 3
FE 92 (999 3 | 3 | 3 | 3
FE 85
G,FD 87 | 999 | 999 | 999
¥ F,GD 85 | 999 | 999
D,GF 85 | 999
4.—/ GFD 64




 Simulating the Game of Life

. i dt

xr

en.wikipedia.org/wiki/Conway%27s_Game_of_Life



% Simulating the Game of Life

en.wikipedia.org/wiki/Conway%27s_Game_of_Life
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47 Simulating thHe Game of Life
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What’s Next?



°Y Quantum Machine Learning
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°1 Quantum Machine Learning

Feedback
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°2Quantum Machine Learning
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>3 Challenges for Quantum Al

The Replace the feedback loop around training entirely
Feedback Loop with a quantum algorithm.




4 The Amount of Data
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> Challenges for Quantum Al

4 D
The Replace the feedback loop around training entirely

Feedback Loop with a quantum algorithm.
J

The Provide means to process (the essence of) large

Training Data amounts of data on quantum computers.
- J




°® A Full Stack of Knowledge PlanQK

www.plangk.de

packaged
solution 1
'i

Prof Dr. Dr. h.c.
users Frank Leymann
Scientific Director

Search & Order

®
QAIl applications
®
Implementation developers

QA algorithms

specialists
community

Analysis
Standardization

\
)
\
)
\
)

=’o

f

QAI concepts




" Challenges for Quantum Al

r

The

Feedback Loop
J

\

The
Training Data

The
Interfaces

J

Replace the feedback loop around training entirely
with a quantum algorithm.

Provide means to process (the essence of) large
amounts of data on quantum computers.

Provide standardized interfaces that allow for dynamic
combination of QAIl components and (by extension) for

experts of different fields to collaborate on QAI algorithms.

P

™

Domain Analysis
Al Algorithms

Quantum Platform



8 The Best Quantum Algorithm?

Employ a dozen algorithmically trained physicists and
(physically trained??) programmers.

They will find a better algorithm than the one you wrote
that one night in total desparation.

That algorithm may not actually need to use any
quantum hardware.



> Challenges for Quantum Al

r

N
The

Feedback Loop
J

The
Training Data

r

The
Interfaces

J

The
Real Reason

Replace the feedback loop around training entirely
with a quantum algorithm.

Provide means to process (the essence of) large
amounts of data on quantum computers.

Provide standardized interfaces that allow for dynamic
combination of QAIl components and (by extension) for

experts of different fields to collaborate on QAI algorithms.

Keep track of the source of observed improvements and
use it wisely.

,,,,,,,,,,,

Domain Analysis
Al Algorithms

Quantum Platform

Employ a dozen
alanrithmically

They will find a
better alaorithm

That algorithm
may not
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