
Prof. Dr. Claudia Linnhoff-Popien
Thomy Phan, Andreas Sedlmeier, Fabian Ritz
http://www.mobile.ifi.lmu.de

SoSe 2019

Praktikum Autonome Systeme

Function Approximation

http://www.mobile.ifi.lmu.de/

 Recaps

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Function Approximation

Recap: Sequential Decision Making

• Goal: Autonomously select actions to solve a (complex) task

– time is important (actions might have long term
consequences)

– maximize the expected cumulative reward for each state

3

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Function Approximation

Recap: Automated Planning

• Goal: Find (near-)optimal policies 𝜋∗ to solve complex problems

• Use (heuristic) lookahead search on a given model ෡𝑀 ≈ 𝑀 of the problem

4

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Function Approximation

Recap: Reinforcement Learning (1)

• Goal: Find an (near-)optimal policy to solve complex problems

• Learn via trial-error from (real) experience:

– Model 𝒫 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 is unknown

– Experience samples 𝑒𝑡 = 〈𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1〉 are generated by interacting
with a (real or simulated) environment

– To obtain sufficient experience samples one has to balance between
exploration and exploitation of actions

5

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Function Approximation

Recap: Reinforcement Learning (2)

• Goal: Find an (near-)optimal policy to solve complex problems

1. Model Free Prediction = Policy Evaluation (estimate 𝑉𝜋 given 𝜋)

2. Model Free Control = Policy Improvement (improve 𝜋 given 𝑉𝜋)

• Temporal Difference vs. Monte Carlo Learning?

• On-Policy vs. Off-Policy Learning?

6

 Large Scale Reinforcement
Learning

Artificial Intelligence

Act

Learn Think

Machine
Learning

Planning

Pattern Recognition Scheduling

Decision Making

Multi-Agent Systems

Reinforcement
Learning

Social Interactivity

Artificial Intelligence

Act

Think

Machine
Learning

Planning

Pattern Recognition Scheduling

Decision Making

Multi-Agent Systems

Reinforcement
Learning

Social Interactivity

Learn

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Function Approximation

Motivation

• So far: Approximation of 𝜋∗, 𝑉∗, and 𝑄∗ using

– Tables (e.g., Dynamic Programming, Q-Learning, SARSA, …)

– Trees (e.g., MCTS)

• Works well for small and discrete problems, if sufficient
memory and computational resources available

• Our goal is to solve large (and continuous) decision making
problems!

10

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Function Approximation

Motivation

• Idea: Use Function Approximation (Machine Learning) to
approximate 𝜋∗, 𝑉∗, and 𝑄∗ using

– Gradient-based approximators (e.g., neural networks)

– Decision trees

– Nearest neighbors

– …

11

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Function Approximation

Motivation

• Idea: Use Function Approximation (Machine Learning) to
approximate 𝜋∗, 𝑉∗, and 𝑄∗ using

– Gradient-based approximators (e.g., neural networks)

– Decision trees

– Nearest neighbors

– …

12

This is what we are focusing on …

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Function Approximation

Deep Learning

• Deep Learning: Neural Network with multiple hidden layers

• Enables end-to-end learning (feature learning + mapping) of tasks

• Typically trained with Stochastic Gradient Descent

• Works well for many complex tasks – but hard to interpret

13

Input Output

Hidden Layers

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Function Approximation

Why Deep Learning for Reinforcement Learning?

• Reinforcement Learning typically requires large amount of experience /
data to solve complex problems (with large state and action spaces)

• Deep Learning scales well with large amount of data

14

Andrew Ng, What data scientistis should know about deep learning, 2015

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Function Approximation

Principle and Limitations

• Use መ𝑓𝜃 (e.g., a neural network) to approximate an unknown
function 𝑓 with parameters / weights 𝜃 ∈ Θ

– Typically the parameter space Θ is much smaller than the input
space (e.g., the state space 𝒮 of an MDP)

– Modifying 𝜃 to update መ𝑓𝜃(𝑥) will affect መ𝑓𝜃(𝑥′) even if 𝑥′ is
completely independent of 𝑥

– The more updates to መ𝑓𝜃(𝑥) the better the estimation will be
(and the worse the estimation some other 𝑥′ might become)

– Instead of directly seeking perfect approximations of 𝜋∗, 𝑉∗,
and 𝑄∗, we seek for appropriate weights 𝜃, which minimize
some error / loss function

• Our goal is a good generalization for the most relevant inputs!

15

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Function Approximation

Non-Stationary Data

• As our agents evolves, the experience it generates becomes
non-stationary:

– Current policy 𝜋𝑛 improves over time

– „Bad“ states are visited less over time

• Example:

16

initial exploration focused exploration focused exploitation

 Value Function
Approximation

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Function Approximation

Value Function Approximation

• Goal: approximate 𝑄(𝑠𝑡 , 𝑎𝑡)
∗ using ෠𝑄𝜃(𝑠𝑡 , 𝑎𝑡)

– ෠𝑄𝜃(𝑠𝑡 , 𝑎𝑡) is represented by a neural network

– 𝜃 are the weights / learnable parameters

• 𝑄(𝑠𝑡 , 𝑎𝑡)
∗ is approximated via regression

– Given experience samples 𝑒𝑡 = 〈𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡, 𝑠𝑡+1〉

– Regression target 𝑦𝑡 is defined by Bellman equation
or sample return 𝐺𝑡 (or some combination)

– 𝜃 is optimized via (stochastic) gradient descent on
〈𝑠𝑡 , 𝑦𝑡〉-pairs

18

states 𝑠𝑡

value 𝑦𝑡

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Function Approximation

Value Network Architectures

• Possible architectures:

19

෠𝑄𝜃
State 𝑠𝑡

Action 𝑎𝑡
Action Value ෠𝑄𝜃(𝑠𝑡 , 𝑎𝑡)

෠𝑄𝜃State 𝑠𝑡

෠𝑄𝜃(𝑠𝑡 , 𝑎1)

෠𝑄𝜃(𝑠𝑡 , 𝑎𝑛)

…

Which one makes
more sense to you?

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Function Approximation

Monte Carlo Approximation

• Idea: Learn 𝑄(𝑠𝑡 , 𝑎𝑡)
∗ from sample returns

1) Run multiple episodes 𝑠1, 𝑎1, 𝑟1, … , 𝑠𝑇−1, 𝑎𝑇−1, 𝑟𝑇−1, 𝑠𝑇
2) For each episode compute the return 𝐺𝑡 for each state 𝑠𝑡

𝐺𝑡 = ෍

𝑘=0

ℎ−1

𝛾𝑘 ℛ 𝑠𝑡+𝑘 , 𝜋 𝑠𝑡+𝑘 , 𝛾 ∈ [0,1]

3) Perform regression on each 〈𝑠𝑡 , 𝐺𝑡〉-pair to adapt 𝜃

 Typically one gradient descent step (why only one?)

 Minimize the mean squared error 𝛿𝑡 =
(𝐺𝑡− ෠𝑄𝜃(𝑠𝑡 , 𝑎𝑡))

2 w.r.t. to 𝜃

4) Repeat all steps starting from 1.

• How shall we run these episodes? exploration?

20

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Function Approximation

Exploration-Exploitation Dilemma

• Goal: To ensure good generalization of ෠𝑄𝜃(𝑠𝑡 , 𝑎𝑡), we need to
explore various states sufficiently

– Otherwise overfitting on „well-known“ states

– Unexpected / Undesirable behaviour on „new“ states

– Detect / Adapt to changes in the environment

• Approach: Use multi-armed bandit based exploration

– Example: 𝜖-greedy (𝜖 > 0)

𝜖, select randomly

1 − 𝜖, select action 𝑎𝑡 with highest ෠𝑄𝜃(𝑠𝑡, 𝑎𝑡)

21

With probability

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Function Approximation

Monte Carlo Approximation Summary

• Advantages:

– Simple method for value function approximation

– Garantueed convergence given sufficient time and data

• Disadvantages:

– Only offline learning (task needs to be episodic)

– High variance in return estimation

22

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Function Approximation

Temporal Difference (TD) Learning

• Idea: Learn 𝑄(𝑠𝑡 , 𝑎𝑡)
∗ from Bellman Updates

1) Run multiple episodes 𝑠1, 𝑎1, 𝑟1, … , 𝑠𝑇−1, 𝑎𝑇−1, 𝑟𝑇−1, 𝑠𝑇
2) For each episode compute the TD target ෠𝐺𝑡 for each state

෠𝐺𝑡 = 𝑟𝑡 + 𝛾 max
𝑎𝑡+1∈𝒜

෠𝑄𝜃(𝑠𝑡+1, 𝑎𝑡+1)

3) Perform regression on each 〈𝑠𝑡 , 𝐺𝑡〉-pair to adapt 𝜃

 Typically one gradient descent step

 Minimize the mean squared TD error 𝛿𝑡 =
(෠𝐺𝑡 − ෠𝑄𝜃(𝑠𝑡 , 𝑎𝑡))

2 w.r.t. to 𝜃

4) Repeat all steps starting from 1.

• Similarly to Monte Carlo Approximation, we need sufficient
exploration (e.g., 𝝐-greedy)

23

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Function Approximation

TD Learning Summary

• Advantages:

– Can be applied online ෠𝐺𝑡= 𝑟𝑡 + 𝛾 max
𝑎𝑡+1∈𝒜

෠𝑄𝜃(𝑠𝑡+1, 𝑎𝑡+1)

– Reuse / Bootstrapping of successor values

• Disadvantages:

– No convergence garantuees (except linear function
approximation)

– High bias in return estimation

24

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Function Approximation

TD Learning Issues with Deep Learning

• Deep Learning is highly sensitive to correlation in data

– Possible overfitting / Hard generalization

– Experience / Data generated via RL is highly correlated

(1) w.r.t. successing states within the same episode

(2) w.r.t. action value prediction ෠𝑄 and the TD target:

෠𝐺𝑡 = 𝑟𝑡 + 𝛾 max
𝑎𝑡+1∈𝒜

෠𝑄𝜃(𝑠𝑡+1, 𝑎𝑡+1)

• Small changes to 𝜽 may significantly change ෡𝑸𝜽 and the
resulting policy!

25

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Function Approximation

TD Learning Issues with Deep Learning

• Deep Learning is highly sensitive to correlation in data

– Possible overfitting / Hard generalization

– Experience / Data generated via RL is highly correlated

(1) w.r.t. successing states within the same episode

(2) w.r.t. action value prediction ෠𝑄 and the TD target

• Solution to (1): Experience Replay

– Perform stochastic gradient descent on randomly sampled
minibatch of experience samples 𝑒𝑡 = 〈𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1〉

– Random sampling breaks the temporal correlation

– Possible extension: prioritized sampling based on TD error

26

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Function Approximation

TD Learning Issues with Deep Learning

• Deep Learning is highly sensitive to correlation in data

– Possible overfitting / Hard generalization

– Experience / Data generated via RL is highly correlated

(1) w.r.t. successing states within the same episode

(2) w.r.t. action value prediction ෡𝑸 and the TD target

• Solution to (2): Target Network

– Use an older copy 𝜃−of 𝜃 to compute the TD target
෠𝐺𝑡 = 𝑟𝑡 + 𝛾 max

𝑎𝑡+1∈𝒜
෡𝑸𝜽−(𝒔𝒕+𝟏, 𝒂𝒕+𝟏)

– Periodically set 𝜃− to 𝜃 (𝜃−is freezed, while 𝜃 is adapting)

– Possible extension: soft updates of 𝜃− using a weighting
factor 𝛼 (𝜃− ← (1 − 𝛼)𝜃− + 𝛼𝜃)

27

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Function Approximation

DQN – Value-based Deep Reinforcement Learning

• Deep Q-Networks (DQN):

– Q-Learning implemented with deep neural networks

– Uses experience replay and target networks

– Successfully applied to multiple Atari Games using end-to-
end learning (no handcrafted features for state descriptions)

28

…

V. Mnih et al., Human-level control through deep reinforcement learning, Nature, 2015

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Function Approximation

Value Function Approximation Summary

• Monte Carlo Approximation (offline, high variance)

• Temporal Difference Learning (online, high bias)

• Deep RL suited for high-dimensional state spaces

• Action space must be discrete for model-free control

29

 Policy Approximation

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Function Approximation

Policy Approximation

• Goal: approximate 𝜋∗ using ො𝜋𝜃 𝑎𝑡 𝑠𝑡 ∈ [0,1]

– ො𝜋𝜃 𝑎𝑡 𝑠𝑡 is represented by a neural network

– 𝜃 are the weights / learnable parameters

• Why approximating 𝜋∗ instead of 𝑄∗?

– Stochastic policies

– Continuous action spaces

– Convergence properties

31

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Function Approximation

Policy Gradients

• Goal: approximate 𝜋∗ using ො𝜋𝜃 𝑎𝑡 𝑠𝑡 ∈ [0,1]

– ො𝜋𝜃 𝑎𝑡 𝑠𝑡 is represented by a neural network

– 𝜃 are the weights / learnable parameters

• In episodic tasks, ො𝜋𝜃 𝑎𝑡 𝑠𝑡 is evaluated with its start value
𝐽 𝜃 :

𝐽 𝜃 = 𝑉𝜋𝜃 𝑠1 = 𝔼[𝐺1|𝑠1, 𝜋𝜃]

• To learn 𝜋∗, we have to optimize 𝜃 to maximize 𝐽 𝜃

– E.g., with gradient ascent

32

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Function Approximation

Policy Gradients

• To perform gradient ascent w.r.t. 𝜃, we have to estimate the
gradient of 𝐽 𝜃 :

𝛻𝜃𝐽 𝜃 =

𝛿𝐽(𝜃)

𝛿𝜃1

…
𝛿𝐽(𝜃)

𝛿𝜃𝑛

• Given a differentiable policy ො𝜋𝜃 𝑎𝑡 𝑠𝑡 , the gradient 𝛻𝜃𝐽 𝜃
can be estimated with:

𝐴𝜋𝜃(𝑠𝑡 , 𝑎𝑡)𝛻𝜃log ො𝜋𝜃 𝑎𝑡 𝑠𝑡

33

parameter 𝜃

start value
𝐽 𝜃

gradient
𝜵𝜽𝑱 𝜽

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Function Approximation

Policy Gradients

• The policy gradient

𝐴𝜋𝜃(𝑠𝑡 , 𝑎𝑡)𝛻𝜃log ො𝜋𝜃 𝑎𝑡 𝑠𝑡

with advantage 𝐴𝜋𝜃(𝑠𝑡 , 𝑎𝑡) can be expressed in different ways:

 𝐴𝜋𝜃 𝑠𝑡 , 𝑎𝑡 = 𝐺𝑡 = σ𝑘=0
ℎ−1 𝛾𝑘 𝑟𝑡 (REINFORCE)

 𝐴𝜋𝜃 𝑠𝑡 , 𝑎𝑡 = 𝐺𝑡 − ෠𝑉𝜔(𝑠𝑡) (Advantage Actor-Critic)

 𝐴𝜋𝜃 𝑠𝑡 , 𝑎𝑡 = ෠𝑄𝜔 𝑠𝑡 , 𝑎𝑡 (Q Actor-Critic)

 𝐴𝜋𝜃 𝑠𝑡 , 𝑎𝑡 = 𝑟𝑡 + 𝛾 ෠𝑉𝜔 𝑠𝑡+1 − ෠𝑉𝜔(𝑠𝑡) (TD Actor-Critic)

34

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Function Approximation

Implementation Details

• Variant 1:

– Modify classification loss ℒ𝑐𝑒 (e.g., cross entropy loss)

– Given episodes with experience samples 𝑒𝑡 =
〈𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1〉

– Compute ℒ𝑐𝑒(𝑠𝑡) = 𝑎𝑡log ො𝜋𝜃(𝑎𝑡|𝑠𝑡) for each 𝑒𝑡
– Multiply loss ℒ𝑐𝑒(𝑠𝑡) with 𝐴𝜋𝜃 𝑠𝑡 , 𝑎𝑡 (see slide before)

– Minimize ℒ𝑐𝑒 = 𝔼[ℒ𝑐𝑒(𝑠𝑡)𝐴
𝜋𝜃 𝑠𝑡 , 𝑎𝑡] with gradient

descent

• Important Note: No experience replay used here! Gradient
descent has to be performed on all experience samples
(which are discarded afterwards) Can you guess why?

35

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Function Approximation

Implementation Details

• Variant 2:

– Modify gradient of classification loss ℒ𝑐𝑒
– Given episodes with experience samples 𝑒𝑡 =
〈𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1〉

– Compute ℒ𝑐𝑒(𝑠𝑡) = 𝑎𝑡log ො𝜋𝜃(𝑎𝑡|𝑠𝑡) for each 𝑒𝑡
– Compute gradients 𝛻𝜃log ො𝜋𝜃(𝑎𝑡|𝑠𝑡)

– Multiply gradients 𝛻𝜃log ො𝜋𝜃(𝑎𝑡|𝑠𝑡) with 𝐴𝜋𝜃 𝑠𝑡 , 𝑎𝑡
– Apply accumulated gradients to 𝜃 ← 𝜃 +
𝛼σ𝑒𝑡 𝐴

𝜋𝜃 𝑠𝑡 , 𝑎𝑡 𝛻𝜃log ො𝜋𝜃 (𝑎𝑡|𝑠𝑡)

• Important Note: No experience replay used here! Gradient
descent has to be performed on all experience samples
(which are discarded afterwards) Can you guess why?

36

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Function Approximation

Discrete vs. Continuous Action Spaces

• Discrete action spaces:
– Output is a probability vector (e.g., softmax)

– Each vector element ො𝜋𝜃(𝑎𝑡|𝑠𝑡) corresponds to
the probability of a single action 𝒂𝒕

– Implicit exploration: sample 𝑎𝑡~ො𝜋𝜃(𝑎𝑡|𝑠𝑡)

• Continuous action spaces:
– Output is a vector of real values (which could be

bounded)

– Each vector element corresponds to a degree of
freedom 𝑑𝑖 (e.g., acceleration, rotation, …)

– The whole vector represents a single action 𝒂𝒕
– Needs additional exploration mechanism

37

ො𝜋𝜃𝑠𝑡

ො𝜋𝜃(𝑎1|𝑠𝑡)

ො𝜋𝜃(𝑎𝑛|𝑠𝑡)

…

ො𝜋𝜃𝑠𝑡

𝑑𝑙

…
𝑑1

one action

all action probabilities

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Function Approximation

Exploration in Continuous Action Spaces

• On-Policy:
– Learn distribution (e.g., normal distribution
𝒩𝜇𝑖,𝜎𝑖(𝑠𝑡)) for each degree of freedom 𝑑𝑖

– Sample action 𝑎𝑡 =
〈𝑑1~𝒩𝜇1,𝜎1 𝑠𝑡 , … , 𝑑𝑙~𝒩𝜇𝑙,𝜎𝑙 𝑠𝑡 〉

– Example algorithm: A2C, A3C

• Off-Policy:
– Add noise to the degrees of freedom (e.g., by

using an external normal distribution)

– Requires further adjustments (most policy
gradient algorithms are on-policy!)

– Example algorithms: DDPG, PPO

38

ො𝜋𝜃𝑠𝑡

𝑑𝑙

…
𝑑1

ො𝜋𝜃𝑠𝑡

〈𝜇1, 𝜎1〉

〈𝜇𝑙 , 𝜎𝑙〉

…

add noise to action

sample action

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Function Approximation

On-Policy Exploration in Continuous Action Spaces

• Approach: Learn normal distribution 𝒩𝜇𝑖,𝜎(𝑠𝑡) for

each degree of freedom 𝑑𝑖 using two output layers:
– One layer 𝜇 = 〈𝜇1, … , 𝜇𝑙〉

– The other layer 𝜎 = 𝑓(𝜎1, … , 𝜎𝑙)

– After sampling 𝑎𝑡, losses ℒ𝜇 and ℒ𝜎 are computed and

multiplied with 𝐴𝜋𝜃 𝑠𝑡, 𝑎𝑡 (for joint minimization)

39

ො𝜋𝜃𝑠𝑡
𝜇𝑙

…
𝜇1

𝜎𝑙

…
𝜎1

Centroid 𝝁

Spherical
Deviation 𝝈 = 𝒇(𝝈𝟏, … , 𝝈𝒍)

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Function Approximation

On-Policy Exploration in Continuous Action Spaces

• Example: Assume 𝜇 is linear and 𝑓 for 𝜎 is softplus.
– Given an action 𝑎𝑡 for state 𝑠𝑡 and experience tuple
𝑒𝑡 = 〈𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1〉

– Use the mean squared loss between 𝑎𝑡 and 𝜇 as ℒ𝜇

– Use softplus as ℒ𝜎

– Minimize 𝔼[ℒ𝜇 𝑠𝑡 + ℒ𝜎 𝑠𝑡 𝐴𝜋𝜃 𝑠𝑡, 𝑎𝑡]

40

ො𝜋𝜃𝑠𝑡
𝜇𝑙

…
𝜇1

𝜎𝑙

…
𝜎1

Centroid 𝝁

Spherical
Deviation 𝝈 = 𝒇(𝝈𝟏, … , 𝝈𝒍)

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Function Approximation

Off-Policy Exploration in Continuous Action Spaces

• Approach: Add noise from an external origin-centered
(normal) distribution 𝒩𝜇,𝜎(𝑠𝑡) to each degree of freedom 𝑑𝑖
– 𝜎 can be adjusted to control the noise level (degree of exploration)

– Alternatively: add noise to weights 𝜃 of approximator ෝ𝝅𝜽

– Note: ෝ𝝅𝜽 has to be updated in an off-policy fashion!

41

ො𝜋𝜃𝑠𝑡

𝑑𝑙

…
𝑑1

add noise to action
from 𝒩𝜇,𝜎(𝑠𝑡)

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Function Approximation

Off-Policy Exploration in Continuous Action Spaces

• Example: Deep Deterministic Policy Gradient (DDPG)

– Approximates ො𝜋𝜃 as actor and ෠𝑄𝜔 as critic

– Given a buffer of experience samples 𝑒𝑡 = 〈𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1〉

– Update ෠𝑄𝜔 (e.g., using TD-learning)

– Update ො𝜋𝜃 with previously computed gradients of ෠𝑄𝜔 by minimizing:

𝔼[𝛻𝑎𝑡
෠𝑄𝜔(𝑠𝑡, 𝑎𝑡) 𝛻𝜃 ො𝜋𝜃(𝑠𝑡)]

42

ො𝜋𝜃𝑠𝑡

𝑑𝑙

…
𝑑1

෠𝑄𝜔 ෠𝑄𝜃(𝑠𝑡 , 𝑎𝑡)

𝑠𝑡

𝑎𝑡

Actor Critic

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Function Approximation

Policy Approximation Summary

• Direct approximation of 𝜋∗

• Advantage function can be approximated in various ways

• Learning of stochastic policies possible

• Applicable to continuous action spaces (requires additional
mechanisms for exploration)

• Guarantueed convergence to local optimum

43

 Overview

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Function Approximation

Function Approximation Overview

• Value Function Approximation

• Policy Approximation

45

Monte Carlo Temporal Difference

Bias Low High

Variance High Low

Convergence Guarantueed Not guarantueed

On-/Off-Policy Both Both

REINFORCE/AC DDPG

Bias Depends on 𝐴𝜋𝜃 Depends on 𝐴𝜋𝜃

Variance Depends on 𝐴𝜋𝜃 Depends on 𝐴𝜋𝜃

Convergence Guarantueed Guarantueed

On-/Off-Policy On-Policy Off-Policy

Thank you!

