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- Recaps



Recap: Sequential Decision Making

* Goal: Autonomously select actions to solve a (complex) task

— time is important (actions might have long term
consequences)

— maximize the expected cumulative reward for each state

reward,
observation

environment
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Recap: Automated Planning

e Goal: Find (near-)optimal policies =™ to solve complex problems

* Use (heuristic) lookahead search on a given model M ~ M of the problem

agent reward, model
\‘&/
action

rewa rd" environment
observation
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Recap: Reinforcement Learning (1)

reward., environment
observation

* Learn via trial-error from (real) experience:

— Model P(s¢4q|S¢, a;) is unknown

— Experience samples ¢; = (s¢, as, 14, S¢+1) are generated by interacting
with a (real or simulated) environment

— To obtain sufficient experience samples one has to balance between
exploration and exploitation of actions
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Recap: Reinforcement Learning (2)

reward,
observation

environment

1. Model Free Prediction = Policy Evaluation (estimate V™ given )
2. Model Free Control = Policy Improvement (improve m given V™)

 Temporal Difference vs. Monte Carlo Learning?
* On-Policy vs. Off-Policy Learning?
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—> Large Scale Reinforcement
Learning
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Motivation

e So far: Approximation of T*, V*, and Q™ using
— Tables (e.g., Dynamic Programming, Q-Learning, SARSA, ...)
— Trees (e.g., MCTS)

* Works well for small and discrete problems, if sufficient
memory and computational resources available

* Our goal is to solve large (and continuous) decision making
problems!
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Motivation

e Idea: Use Function Approximation (Machine Learning) to
approximate r*, V", and Q™ using

— Gradient-based approximators (e.g., neural networks)
— Decision trees
— Nearest neighbors
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Motivation

e Idea: Use Function Approximation (Machine Learning) to
approximate r*, V", and Q™ using

— Gradient-based approximators (e.g., neural networks)
— Decision trees
— Nearest neighbors

This is what we are focusing on ...
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Deep Learning

* Deep Learning: Neural Network with multiple hidden layers
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Hidden Layers
* Enables end-to-end learning (feature learning + mapping) of tasks

‘1/
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* Typically trained with Stochastic Gradient Descent
* Works well for many complex tasks — but hard to interpret
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Why Deep Learning for Reinforcement Learning?

* Reinforcement Learning typically requires large amount of experience /
data to solve complex problems (with large state and action spaces)

* Deep Learning scales well with large amount of data

Why deep learning

Deep learning
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Amount of data

How do data science techniques scale with amount of data?

Andrew Ng, What data scientistis should know about deep learning, 2015
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Principle and Limitations

 Use fg (e.g., a neural network) to approximate an unknown
function f with parameters / weights 68 € 0

— Typically the parameter space 0 is much smaller than the input
space (e.g., the state space § of an MDP)

— Modifying 6 to update fg(x) will affect fy(x') even if x’ is
completely independent of x

— The more updates to fy(x) the better the estimation will be
(and the worse the estimation some other x’ might become)

— Instead of directly seeking perfect approximations of =™, V7,
and QF, we seek for appropriate weights 8, which minimize
some error / loss function

* QOur goal is a good generalization for the most relevant inputs!
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Non-Stationary Data

* As our agents evolves, the experience it generates becomes
non-stationary:
— Current policy ™ improves over time

— ,Bad” states are visited less over time

 Example:

. . i

initial exploration focused exploration focused exploitation
PfDCLhﬁppThmyPhAdelmFbRthtkmAthytmrﬁ ______________________________________________
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- Value Function
Approximation



Value Function Approximation

* Goal: approximate Q(s;, a;)* using Qg (¢, a;)
— Qg (s;,a,) is represented by a neural network
— @ are the weights / learnable parameters

value y, '.0. e *
* . . . [ ) . - >
* Q(s¢ ap)” is approximated via regression states s
— Given experience samples e; = (S¢, A, ¢, Sg41)
— Regression target y; is defined by Bellman equation
or sample return G; (or some combination)
— 0 is optimized via (stochastic) gradient descent on
(St, Ve )-pairs
R o i R R
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Value Network Architectures

e Possible architectures:

State s;

:> QH |:> Action Value Qg (s, a;)

Action at

Which one makes
more sense to you?

:> QQ (Sti (11)
State s; |:>
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Monte Carlo Approximation

* Idea: Learn Q(s¢, a;)™ from sample returns
1) Run multiple episodes sq,aq,1q, ..., S7_1,Q7_1, T7—1, ST

2) For each episode compute the return G, for each state s;
h—1

Gy = z % R(5t+k»”(5t+k))»y € [0,1]
k=0
3) Perform regression on each (s;, G;)-pair to adapt 6
— Typically one gradient descent step (why only one?)
— Minimize the mean squared error §; =
(G.—0q(s¢,ap))? w.rt.to 6
4) Repeat all steps starting from 1.

*  How shall we run these episodes? mmmp exploration?
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Exploration-Exploitation Dilemma

« Goal: To ensure good generalization of Qg (s, a;), we need to
explore various states sufficiently

— Otherwise overfitting on ,well-known® states
— Unexpected / Undesirable behaviour on ,new*” states
— Detect / Adapt to changes in the environment

* Approach: Use multi-armed bandit based exploration
— Example: e-greedy (¢ > 0)

obabil €, select randomly
With probabilit ~
P Y 1 — €, select action a; with highest Qg (s¢, a;)
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Monte Carlo Approximation Summary

* Advantages:
— Simple method for value function approximation
— Garantueed convergence given sufficient time and data

* Disadvantages:
— Only offline learning (task needs to be episodic)

— High variance in return estimation
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Temporal Difference (TD) Learning

* Idea: Learn Q(s¢, a;)* from Bellman Updates
1) Run multiple episodes sq,aq,1q, ..., S7_1,Q7_1, T7—1, ST
2) For each episode compute the TD target ﬁt for each state
Ge =1 +y max Qp(Ses1, Qps1)
At+1€A
3) Perform regression on each (s;, G;)-pair to adapt 0
— Typically one gradient descent step
— Minimize the mean squared TD error §; =
(G, — Qg(sy,a.))? wrt. to 0
4) Repeat all steps starting from 1.

* Similarly to Monte Carlo Approximation, we need sufficient
exploration (e.g., e-greedy)
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TD Learning Summary

* Advantages:

— Can be applied online G;= 1, + ¥ max Qg (S¢s1,Ars1)
Aty1€A

— Reuse / Bootstrapping of successor values

* Disadvantages:

— No convergence garantuees (except linear function
approximation)

— High bias in return estimation
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TD Learning Issues with Deep Learning

* Deep Learning is highly sensitive to correlation in data
— Possible overfitting / Hard generalization
— Experience / Data generated via RL is highly correlated
(1) w.r.t. successing states within the same episode

(2) w.r.t. action value prediction Q and the TD target:

P

Ge =1 +y max Qg(S¢+1,Ars1)
At+1€A

* Small changes to O may significantly change Qg and the
resulting policy!
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TD Learning Issues with Deep Learning

* Deep Learning is highly sensitive to correlation in data
— Possible overfitting / Hard generalization
— Experience / Data generated via RL is highly correlated
(1) w.r.t. successing states within the same episode

(2) w.r.t. action value prediction Q and the TD target

e Solution to (1): Experience Replay

— Perform stochastic gradient descent on randomly sampled
minibatch of experience samples e; = (s¢, ag, ¢, Sgy1)

— Random sampling breaks the temporal correlation
— Possible extension: prioritized sampling based on TD error
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TD Learning Issues with Deep Learning

* Deep Learning is highly sensitive to correlation in data
— Possible overfitting / Hard generalization
— Experience / Data generated via RL is highly correlated
(1) w.r.t. successing states within the same episode
(2) w.r.t. action value prediction Q and the TD target

e Solution to (2): Target Network
— Use an older copy 6~ of 8 to compute the TD target

Ge=1+y max Qg-(S¢r1, Aprq)
At+1€A

— Periodically set 8~ to 6 (0 is freezed, while 8 is adapting)

— Possible extension: soft updates of 6~ using a weighting
factora (0~ <« (1 —a)0~ + ab)
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DQN - Value-based Deep Reinforcement Learning

 Deep Q-Networks (DQN):
— Q-Learning implemented with deep neural networks
— Uses experience replay and target networks

— Successfully applied to multiple Atari Games using end-to-
end learning (no handcrafted features for state descriptions)
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V. Mnih et al., Human-level control through deep reinforcement learning, Nature, 2015
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Value Function Approximation Summary

* Monte Carlo Approximation (offline, high variance)
 Temporal Difference Learning (online, high bias)
 Deep RL suited for high-dimensional state spaces

e Action space must be discrete for model-free control
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-=> Policy Approximation



Policy Approximation

* Goal: approximate m* using g (a;|s;) € [0,1]
— 7tg(a;|s;) is represented by a neural network
— @ are the weights / learnable parameters

 Why approximating " instead of Q*?
— Stochastic policies
— Continuous action spaces
— Convergence properties
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Policy Gradients

* Goal: approximate m* using g (a;|s;) € [0,1]
— 7tg(a;|s;) is represented by a neural network
— @ are the weights / learnable parameters

* |In episodic tasks, 7tg(a;|s;) is evaluated with its start value

J(6):
J(8) =V™0(sy) = E[Gy]s1, mg]

* Tolearn ", we have to optimize 6 to maximize /(6)
— E.g., with gradient ascent
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Policy Gradients

* To perform gradient ascent w.r.t. 8, we have to estimate the
gradient of J(0):

gradient
4 Vel (0)
0](0)7
66, start value
Ve](0) =| ... J(6)
5J(0)
L 66, = >

parameter 6

 Given a differentiable policy 719 (a;|s;), the gradient Vy/(0)
can be estimated with:

AT (s¢, ar)Vglog g (aglse)

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedimeier, Fabian Ritz - Praktikum Autonome Systeme rﬁ
©: Jyf®, mabile and

SoSe 2019, Function Approximation distributed systems group



Policy Gradients

* The policy gradient

AT (s¢, ap)Vglog g (aglse)

with advantage A™0 (s¢, a;) can be expressed in different ways:

— AT (s, a,) = G, = YRZAyFr, (REINFORCE)
— A" (sy,a,.) = G — VU, (s¢) (Advantage Actor-Critic)
— A™0(s,,a,) = 0, (s, ar) (Q Actor-Critic)

— A" (s, a.) =1 + ¥V, (sp41) — V,,(sp) (TD Actor-Critic)
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Implementation Details

* Variant 1:
— Modify classification loss L, (e.g., cross entropy loss)
— Given episodes with experience samples e; =
(St) Qt, Ttr St+1)
— Compute L..(s;) = aslogg(as|s;) for each e;
— Multiply loss L., (s;) with A™0 (s, a;) (see slide before)
— Minimize L., = E[L..(s;)A™0 (s, a; )] with gradient
descent

 Important Note: No experience replay used here! Gradient
descent has to be performed on all experience samples
(which are discarded afterwards) mmmp Can you guess why?
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Implementation Details

* Variant 2:
— Modify gradient of classification loss L,
— Given episodes with experience samples e; =
(St, A, Te) St41)
— Compute L..(s;) = aslogg(as|s;) for each e;
— Compute gradients Vglog g (a;|s;)
— Multiply gradients Vglog g (a;|s;) with A™6 (s, a;)
— Apply accumulated gradientsto 6 < 6 +
a e, AT0(sy, ar)Volog fig (atlst)

 Important Note: No experience replay used here! Gradient
descent has to be performed on all experience samples
(which are discarded afterwards) s Can you guess why?
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Discrete vs. Continuous Action Spaces

e Discrete action spaces:
P all action probabilities

— Output is a probability vector (e.g., softmax) ‘,« ---------- ~
— Each vector element 774 (a;|s;) corresponds to II::> o (a1|5t)i
ope o o 1
the |c.>r.obab|I|ty o.f a single action flt 5, E:> ﬁ@ con |
— Implicit exploration: sample a;~7g(a;|s¢) A ]
LD g (anlsy)!
\ ,,'
* Continuous action spaces:
— Output is a vector of real values (which could be one action

bounded)

— Each vector element corresponds to a degree of
freedom d; (e.g., acceleration, rotation, ...)

— The whole vector represents a single action a,

-

— Needs additional exploration mechanism
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Exploration in Continuous Action Spaces

 On-Policy: sample action
— Learn distribution (e.g., normal distribution ';::> (M1;01;‘i
Ny,o (s¢)) for each degree of freedom d; " ' :

— Sample action a; = >t E:> Ttg eeoe i
(s~ Ny 0, (50D eer i~ Ny (50)) D (k.01

— Example algorithm: A2C, A3C | ——— .

e Off-Policy:
— Add noise to the degrees of freedom (e.g., by
using an external normal distribution)

— Requires further adjustments (most policy
gradient algorithms are on-policy!)

— Example algorithms: DDPG, PPO
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On-Policy Exploration in Continuous Action Spaces
* Approach: Learn normal distribution NV, ;(s;) for
each degree of freedom d; using two output layers:
— One layer p = (pq, ..., Ug)
— The other layer o = f ({04, ..., 07))

— After sampling a;, losses £, and L, are computed and
multiplied with A™0 (s, a;) (for joint minimization)

Centroid u
Spherical
Deviation 0 = f({(04, ..., 0}))
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_On-Policy Exploration in Continuous Action Spaces
* Example: Assume u is linear and f for o is softplus.

— Given an action a; for state s; and experience tuple
er = (S, e, e, St+1)

— Use the mean squared loss between a; and u as £,

— Use softplus as L,

— Minimize IE[(,CH(St) + La(st)) AT (s¢, ar)]

Centroid u
Spherical
Deviation 0 = f({(04, ..., 0}))
*Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedimeier, Fabian Ritz-Praktikum Autonome Systeme ﬁ """"""""""""""""""" 40 """
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Off-Policy Exploration in Continuous Action Spaces

* Approach: Add noise from an external origin-centered
(normal) distribution IV, ;(s;) to each degree of freedom d;

— o can be adjusted to control the noise level (degree of exploration)
— Alternatively: add noise to weights 8 of approximator 7
— Note: 7Ty has to be updated in an off-policy fashion!

add noise to action
from IV, 5 (s¢)
N\

| R ———

———————
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Off-Policy Exploration in Continuous Action Spaces
 Example: Deep Deterministic Policy Gradient (DDPG)

— Approximates 74 as actor and Q,, as critic

— Given a buffer of experience samples e; = (S¢, ¢, ¢, Spy1)

— Update Q,, (e.g., using TD-learning)

— Update 74 with previously computed gradients of Q,, by minimizing:
E[Vath (St,at) Vo To(st)]
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Policy Approximation Summary

e Direct approximation of T*
* Advantage function can be approximated in various ways
* Learning of stochastic policies possible

* Applicable to continuous action spaces (requires additional
mechanisms for exploration)

* Guarantueed convergence to local optimum
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Function Approximation Overview

* Value Function Approximation

_ Monte Carlo Temporal Difference
Low

High

Variance High Low
Convergence Guarantueed Not guarantueed

On-/Off-Policy Both Both

* Policy Approximation

Depends on A™® Depends on A™®
Variance Depends on A™® Depends on A™®
Convergence Guarantueed Guarantueed
On-/Off-Policy On-Policy Off-Policy
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Thank youl!



