

Praktikum Autonome Systeme

Function Approximation

Prof. Dr. Claudia Linnhoff-Popien Thomy Phan, Andreas Sedlmeier, Fabian Ritz <u>http://www.mobile.ifi.lmu.de</u>

SoSe 2019

Recap: Sequential Decision Making

- **Goal:** Autonomously select actions to solve a (complex) task
 - time is important (actions might have long term consequences)
 - maximize the **expected cumulative reward** for each state

Recap: Automated Planning

- **Goal:** Find (near-)**optimal policies** π^* to solve complex problems
- Use (heuristic) lookahead search on a given model $\widehat{M} \approx M$ of the problem

SoSe 2019, Function Approximation

Recap: Reinforcement Learning (1)

• Goal: Find an (near-)optimal policy to solve complex problems

- Learn via trial-error from (real) experience:
 - Model $\mathcal{P}(s_{t+1}|s_t, a_t)$ is unknown
 - **Experience samples** $e_t = \langle s_t, a_t, r_t, s_{t+1} \rangle$ are generated by interacting with a (real or simulated) environment
 - To obtain sufficient experience samples one has to balance between exploration and exploitation of actions

Recap: Reinforcement Learning (2)

• **Goal:** Find an (near-)optimal policy to solve complex problems

- 1. Model Free Prediction = Policy Evaluation (estimate V^{π} given π)
- 2. Model Free Control = Policy Improvement (improve π given V^{π})
- Temporal Difference vs. Monte Carlo Learning?
- On-Policy vs. Off-Policy Learning?

→ Large Scale Reinforcement Learning

Motivation

- So far: Approximation of π^* , V^* , and Q^* using
 - Tables (e.g., Dynamic Programming, Q-Learning, SARSA, ...)
 - Trees (e.g., MCTS)
- Works well for small and discrete problems, if sufficient memory and computational resources available

 Our goal is to solve large (and continuous) decision making problems!

Motivation

- Idea: Use Function Approximation (Machine Learning) to approximate π^* , V^* , and Q^* using
 - Gradient-based approximators (e.g., neural networks)
 - Decision trees
 - Nearest neighbors

Motivation

- Idea: Use Function Approximation (Machine Learning) to approximate π^* , V^* , and Q^* using
 - Gradient-based approximators (e.g., neural networks)
 - Decision trees
 - Nearest neighbors

This is what we are focusing on ...

Deep Learning

• **Deep Learning:** Neural Network with multiple hidden layers

- Enables end-to-end learning (feature learning + mapping) of tasks
- Typically trained with Stochastic Gradient Descent
- Works well for many complex tasks but hard to interpret

Why Deep Learning for Reinforcement Learning?

- Reinforcement Learning typically requires large amount of experience / data to solve complex problems (with large state and action spaces)
- Deep Learning scales well with large amount of data

Andrew Ng, What data scientistis should know about deep learning, 2015

Principle and Limitations

- Use \hat{f}_{θ} (e.g., a neural network) to approximate an unknown function f with parameters / weights $\theta \in \Theta$
 - Typically the parameter space Θ is **much smaller** than the input space (e.g., the state space S of an MDP)
 - Modifying θ to update $\hat{f}_{\theta}(x)$ will affect $\hat{f}_{\theta}(x')$ even if x' is completely independent of x
 - The more updates to $\hat{f}_{\theta}(x)$ the **better** the estimation will be (and the **worse** the estimation some other x' might become)
 - Instead of directly seeking perfect approximations of π^* , V^* , and Q^* , we seek for appropriate weights θ , which minimize some **error / loss function**
- Our goal is a good generalization for the most relevant inputs!

Non-Stationary Data

- As our agents evolves, the experience it generates becomes non-stationary:
 - Current policy π^n improves over time
 - "Bad" states are visited less over time
- Example:

initial exploration

focused exploration

focused exploitation

SoSe 2019, Function Approximation

→ Value Function Approximation

Value Function Approximation

- **Goal:** approximate $Q(s_t, a_t)^*$ using $\hat{Q}_{\theta}(s_t, a_t)$
 - $-\hat{Q}_{\theta}(s_t, a_t)$ is represented by a neural network
 - θ are the weights / learnable parameters

states S_t

- $Q(s_t, a_t)^*$ is approximated via **regression**
 - Given experience samples $e_t = \langle s_t, a_t, r_t, s_{t+1} \rangle$
 - Regression target y_t is defined by Bellman equation or sample return G_t (or some combination)
 - θ is optimized via (stochastic) gradient descent on $\langle s_t, y_t \rangle$ -pairs

Value Network Architectures

• Possible architectures:

State
$$s_t \implies \widehat{Q}_{\theta} \implies$$
 Action Value $\widehat{Q}_{\theta}(s_t, a_t)$

Which one makes more sense to you?

Monte Carlo Approximation

- Idea: Learn Q(s_t, a_t)* from sample returns
 1) Run multiple episodes s₁, a₁, r₁, ..., s_{T-1}, a_{T-1}, r_{T-1}, s_T
 - 2) For each episode compute the return G_t for each state s_t

$$G_t = \sum_{k=0}^{n-1} \gamma^k \mathcal{R}(s_{t+k}, \pi(s_{t+k})), \gamma \in [0,1]$$

3) Perform regression on each $\langle s_t, G_t \rangle$ -pair to adapt θ

- Typically one gradient descent step (why only one?)
- Minimize the mean squared error $\delta_t = (G_t \hat{Q}_{\theta}(s_t, a_t))^2$ w.r.t. to θ

4) Repeat all steps starting from 1.

How shall we run these episodes? exploration?

Exploration-Exploitation Dilemma

- **Goal:** To ensure good generalization of $\hat{Q}_{\theta}(s_t, a_t)$, we need to explore various states sufficiently
 - Otherwise overfitting on "well-known" states
 - Unexpected / Undesirable behaviour on "new" states
 - Detect / Adapt to changes in the environment

Approach: Use multi-armed bandit based exploration

– Example: ϵ -greedy ($\epsilon > 0$)

With probability
$$\begin{cases} \epsilon, \text{ select randomly} \\ 1 - \epsilon, \text{ select action } a_t \text{ with highest } \hat{Q}_{\theta}(s_t, a_t) \end{cases}$$

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Function Approximation

Monte Carlo Approximation Summary

- Advantages:
 - Simple method for value function approximation
 - Garantueed convergence given sufficient time and data
- Disadvantages:
 - Only offline learning (task needs to be episodic)
 - High variance in return estimation

Temporal Difference (TD) Learning

Idea: Learn $Q(s_t, a_t)^*$ from Bellman Updates 1) Run multiple episodes $s_1, a_1, r_1, ..., s_{T-1}, a_{T-1}, r_{T-1}, s_T$ 2) For each episode compute the TD target \hat{G}_t for each state

$$\hat{G}_t = r_t + \gamma \max_{a_{t+1} \in \mathcal{A}} \hat{Q}_{\theta}(s_{t+1}, a_{t+1})$$

- 3) Perform regression on each $\langle s_t, G_t \rangle$ -pair to adapt θ
 - Typically one gradient descent step
 - Minimize the mean squared TD error $\delta_t =$ $(\hat{G}_t - \hat{Q}_{\theta}(s_t, a_t))^2$ w.r.t. to θ

4) Repeat all steps starting from 1.

Similarly to Monte Carlo Approximation, we need sufficient • exploration (e.g., ϵ -greedy)

TD Learning Summary

- Advantages:
 - Can be applied online $\hat{G}_t = r_t + \gamma \max_{a_{t+1} \in \mathcal{A}} \hat{Q}_{\theta}(s_{t+1}, a_{t+1})$
 - Reuse / Bootstrapping of successor values
- Disadvantages:
 - No convergence garantuees (except linear function approximation)
 - High bias in return estimation

TD Learning Issues with Deep Learning

- Deep Learning is highly sensitive to correlation in data
 - Possible overfitting / Hard generalization
 - Experience / Data generated via RL is highly correlated
 (1) w.r.t. successing states within the same episode
 (2) w.r.t. action value prediction \$\hat{Q}\$ and the TD target:

$$\hat{G}_t = r_t + \gamma \max_{a_{t+1} \in \mathcal{A}} \hat{Q}_{\theta}(s_{t+1}, a_{t+1})$$

• Small changes to heta may significantly change $\widehat{Q}_{ heta}$ and the resulting policy!

TD Learning Issues with Deep Learning

- Deep Learning is highly sensitive to correlation in data
 - Possible overfitting / Hard generalization
 - Experience / Data generated via RL is highly correlated (1) w.r.t. successing states within the same episode (2) w.r.t. action value prediction \hat{Q} and the TD target
- Solution to (1): Experience Replay
 - Perform stochastic gradient descent on randomly sampled **minibatch** of experience samples $e_t = \langle s_t, a_t, r_t, s_{t+1} \rangle$
 - Random sampling breaks the temporal correlation
 - Possible extension: prioritized sampling based on TD error

TD Learning Issues with Deep Learning

- Deep Learning is highly sensitive to correlation in data
 - Possible overfitting / Hard generalization
 - Experience / Data generated via RL is highly correlated
 (1) w.r.t. successing states within the same episode
 (2) w.r.t. action value prediction Q and the TD target
- Solution to (2): Target Network
 - Use an older copy θ^- of θ to compute the TD target

$$\widehat{G}_t = r_t + \gamma \max_{a_{t+1} \in \mathcal{A}} \widehat{Q}_{\theta}(s_{t+1}, a_{t+1})$$

- Periodically set θ^- to θ (θ^- is freezed, while θ is adapting)
- Possible extension: soft updates of θ^- using a weighting factor α ($\theta^- \leftarrow (1 \alpha)\theta^- + \alpha\theta$)

DQN – Value-based Deep Reinforcement Learning

- Deep Q-Networks (DQN):
 - Q-Learning implemented with deep neural networks
 - Uses experience replay and target networks
 - Successfully applied to multiple Atari Games using end-toend learning (no handcrafted features for state descriptions)

V. Mnih et al., Human-level control through deep reinforcement learning, Nature, 2015

Value Function Approximation Summary

- Monte Carlo Approximation (offline, high variance)
- Temporal Difference Learning (online, high bias)
- Deep RL suited for high-dimensional state spaces
- Action space must be discrete for model-free control

→ Policy Approximation

Policy Approximation

- **Goal:** approximate π^* using $\hat{\pi}_{\theta}(a_t|s_t) \in [0,1]$
 - $\hat{\pi}_{\theta}(a_t | s_t)$ is represented by a neural network
 - θ are the weights / learnable parameters
- Why approximating π^* instead of Q^* ?
 - Stochastic policies
 - Continuous action spaces
 - Convergence properties

Policy Gradients

- **Goal:** approximate π^* using $\hat{\pi}_{\theta}(a_t|s_t) \in [0,1]$
 - $\hat{\pi}_{\theta}(a_t | s_t)$ is represented by a neural network
 - θ are the weights / learnable parameters
- In episodic tasks, $\hat{\pi}_{\theta}(a_t|s_t)$ is evaluated with its **start value** $J(\theta)$:

$$J(\theta) = V^{\pi_{\theta}}(s_1) = \mathbb{E}[G_1|s_1, \pi_{\theta}]$$

To learn π^{*}, we have to optimize θ to maximize J(θ)
 – E.g., with gradient ascent

Policy Gradients

• To perform gradient ascent w.r.t. θ , we have to estimate the gradient of $J(\theta)$:

• Given a differentiable policy $\hat{\pi}_{\theta}(a_t|s_t)$, the gradient $\nabla_{\theta}J(\theta)$ can be estimated with:

$$A^{\pi_{\theta}}(s_t, a_t) \nabla_{\theta} \log \hat{\pi}_{\theta}(a_t|s_t)$$

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme SoSe 2019, Function Approximation

Policy Gradients

• The policy gradient

$$A^{\pi_{\theta}}(s_t, a_t) \nabla_{\theta} \log \hat{\pi}_{\theta}(a_t|s_t)$$

with advantage $A^{\pi_{\theta}}(s_t, a_t)$ can be expressed in different ways:

$$- A^{\pi_{\theta}}(s_{t}, a_{t}) = G_{t} = \sum_{k=0}^{h-1} \gamma^{k} r_{t}$$
 (REINFORCE)

$$- A^{\pi_{\theta}}(s_{t}, a_{t}) = G_{t} - \hat{V}_{\omega}(s_{t})$$
 (Advantage Actor-Critic)

$$- A^{\pi_{\theta}}(s_{t}, a_{t}) = \hat{Q}_{\omega}(s_{t}, a_{t})$$
 (Q Actor-Critic)

$$- A^{\pi_{\theta}}(s_{t}, a_{t}) = r_{t} + \gamma \hat{V}_{\omega}(s_{t+1}) - \hat{V}_{\omega}(s_{t})$$
 (TD Actor-Critic)

Implementation Details

- Variant 1:
 - Modify classification loss \mathcal{L}_{ce} (e.g., cross entropy loss)
 - Given episodes with experience samples $e_t = \langle s_t, a_t, r_t, s_{t+1} \rangle$
 - Compute $\mathcal{L}_{ce}(s_t) = a_t \log \hat{\pi}_{\theta}(a_t | s_t)$ for each e_t
 - Multiply loss $\mathcal{L}_{ce}(s_t)$ with $A^{\pi_{\theta}}(s_t, a_t)$ (see slide before)
 - Minimize $\mathcal{L}_{ce} = \mathbb{E}[\mathcal{L}_{ce}(s_t)A^{\pi_{\theta}}(s_t, a_t)]$ with gradient descent

 Important Note: No experience replay used here! Gradient descent has to be performed on <u>all experience samples</u> (which are discarded afterwards) _____ Can you guess why?

Implementation Details

- Variant 2:
 - Modify gradient of classification loss \mathcal{L}_{ce}
 - Given episodes with experience samples $e_t = \langle s_t, a_t, r_t, s_{t+1} \rangle$
 - Compute $\mathcal{L}_{ce}(s_t) = a_t \log \hat{\pi}_{\theta}(a_t | s_t)$ for each e_t
 - Compute gradients $\nabla_{\theta} \log \hat{\pi}_{\theta}(a_t | s_t)$
 - Multiply gradients $\nabla_{\theta} \log \hat{\pi}_{\theta}(a_t | s_t)$ with $A^{\pi_{\theta}}(s_t, a_t)$
 - Apply accumulated gradients to $\theta \leftarrow \theta + \alpha \sum_{e_t} A^{\pi_{\theta}}(s_t, a_t) \nabla_{\theta} \log \hat{\pi}_{\theta} (a_t | s_t)$
- Important Note: No experience replay used here! Gradient descent has to be performed on <u>all experience samples</u> (which are discarded afterwards) Can you guess why?

Discrete vs. Continuous Action Spaces

- Discrete action spaces:
 - Output is a probability vector (e.g., softmax)
 - Each vector element $\hat{\pi}_{\theta}(a_t|s_t)$ corresponds to the probability of a single action a_t
 - Implicit exploration: sample $a_t \sim \hat{\pi}_{\theta}(a_t | s_t)$
- Continuous action spaces:
 - Output is a vector of real values (which could be bounded)
 - Each vector element corresponds to a degree of freedom d_i (e.g., acceleration, rotation, ...)
 - The whole vector represents a single action a_t
 - Needs additional exploration mechanism

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

distributed systems group

all action probabilities

Exploration in Continuous Action Spaces

- On-Policy:
 - Learn distribution (e.g., normal distribution $\mathcal{N}_{\mu_i,\sigma_i}(s_t)$) for each degree of freedom d_i
 - Sample action $a_t = \langle d_1 \sim \mathcal{N}_{\mu_1,\sigma_1}(s_t), \dots, d_l \sim \mathcal{N}_{\mu_l,\sigma_l}(s_t) \rangle$
 - Example algorithm: A2C, A3C
- Off-Policy:
 - Add noise to the degrees of freedom (e.g., by using an external normal distribution)
 - Requires further adjustments (most policy gradient algorithms are on-policy!)
 - Example algorithms: DDPG, PPO

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

sample action

$\Rightarrow \widehat{\pi}_{\theta} \xrightarrow{(\mu_1, \sigma_1)} (\mu_l, \sigma_l)$

add noise to action

On-Policy Exploration in Continuous Action Spaces

- Approach: Learn normal distribution $\mathcal{N}_{\mu_i,\sigma}(s_t)$ for each degree of freedom d_i using two output layers:
 - One layer $\mu = \langle \mu_1, ..., \mu_l \rangle$
 - The other layer $\sigma = f(\langle \sigma_1, \dots, \sigma_l \rangle)$
 - After sampling a_t , losses \mathcal{L}_{μ} and \mathcal{L}_{σ} are computed and multiplied with $A^{\pi_{\theta}}(s_t, a_t)$ (for joint minimization)

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Function Approximation

On-Policy Exploration in Continuous Action Spaces

- **Example:** Assume μ is linear and f for σ is softplus.
 - Given an action a_t for state s_t and experience tuple $e_t = \langle s_t, a_t, r_t, s_{t+1} \rangle$
 - Use the mean squared loss between a_t and μ as \mathcal{L}_{μ}
 - Use softplus as \mathcal{L}_{σ}
 - Minimize $\mathbb{E}[(\mathcal{L}_{\mu}(s_t) + \mathcal{L}_{\sigma}(s_t))A^{\pi_{\theta}}(s_t, a_t)]$

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Function Approximation

Off-Policy Exploration in Continuous Action Spaces

- Approach: Add noise from an <u>external</u> origin-centered (normal) distribution $\mathcal{N}_{\mu,\sigma}(s_t)$ to each degree of freedom d_i
 - σ can be adjusted to control the noise level (degree of exploration)
 - Alternatively: add noise to weights heta of approximator $\widehat{\pi}_{m{ heta}}$
 - Note: $\hat{\pi}_{\theta}$ has to be updated in an **off-policy fashion**!

Off-Policy Exploration in Continuous Action Spaces

- Example: Deep Deterministic Policy Gradient (DDPG)
 - Approximates $\hat{\pi}_{\theta}$ as actor and \hat{Q}_{ω} as critic
 - Given a buffer of experience samples $e_t = \langle s_t, a_t, r_t, s_{t+1} \rangle$
 - Update \widehat{Q}_{ω} (e.g., using TD-learning)
 - Update $\hat{\pi}_{\theta}$ with previously computed gradients of \hat{Q}_{ω} by minimizing: $\mathbb{E}[\nabla_{a_t} \hat{Q}_{\omega}(s_t, a_t) \nabla_{\theta} \hat{\pi}_{\theta}(s_t)]$

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Function Approximation

Policy Approximation Summary

- Direct approximation of π^*
- Advantage function can be approximated in various ways
- Learning of stochastic policies possible
- Applicable to continuous action spaces (requires additional mechanisms for exploration)
- Guarantueed convergence to local optimum

\rightarrow Overview

Function Approximation Overview

• Value Function Approximation

	Monte Carlo	Temporal Difference
Bias	Low	High
Variance	High	Low
Convergence	Guarantueed	Not guarantueed
On-/Off-Policy	Both	Both

• Policy Approximation

	REINFORCE/AC	DDPG
Bias	Depends on $A^{\pi_{ heta}}$	Depends on $A^{\pi_{ heta}}$
Variance	Depends on $A^{\pi_{ heta}}$	Depends on $A^{\pi_{ heta}}$
Convergence	Guarantueed	Guarantueed
On-/Off-Policy	On-Policy	Off-Policy

Thank you!