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Decision Making

• Goal: Autonomously select actions to solve a (complex) task

– time could be important (but not necessarily)

– maximize the expected reward for each state

5
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Multi-Armed Bandits

6

• Multi-Armed Bandit: situation, where you have to learn how to make a 
good (long-term) choice

• Explore choices to gather information (= Exploration)

– Example: random choice

• Prefer promising choices (= Exploitation)

– Example: greedy choice (e.g., using argmax)

• A good Multi-Armed Bandit solution should always balance between
Exploration and Exploitation

?
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Multi-Armed Bandits

7

Actor Environment

Exploration/Exploitation:
make a choice

Feedback:
observe (delayed) reward

Update statistics
based on feedback

Execute chosen action
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Multi-Armed Bandits
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 Sequential Decision Making
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Sequential Decision Making

• Goal: Autonomously select actions to solve a (complex) task

– time is important (actions might have long term
consequences)

– maximize the expected cumulative reward for each state

10
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Sequential Decision Making Example

11

• Rooms: reach a goal as fast as possible

agent

actions

goal (reward = +1)



Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme 

WiSe 2019/20, Automated Planning

Markov Decision Processes

• A Markov Decision Process (MDP) is defined as M = 〈𝒮,𝒜,𝒫,ℛ〉:

– 𝒮 is a (finite) set of states

– 𝒜 is a (finite) set of actions

– 𝒫 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 ∈ [0, 1] is the probability for reaching 𝑠𝑡+1 ∈ 𝒮 when
executing 𝑎𝑡 ∈ 𝒜 in 𝑠𝑡 ∈ 𝒮

– ℛ 𝑠𝑡 , 𝑎𝑡 ∈ ℝ is a reward function

12
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Rooms as MDP

13

• Define Rooms as MDP M = 〈𝒮,𝒜,𝒫,ℛ〉:
– States 𝓢: position of the agent

– Actions 𝓐: move north/south/west/east

– Transitions 𝓟: deterministic movement. No transition
if moving against wall.

– Rewards 𝓡: +1 if goal is reached, 0 otherwise
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Markov Decision Processes

• MDPs formally describe environments for Sequential Decision Making

• All states 𝑠𝑡 ∈ 𝒮 are Markov such that

ℙ 𝑠𝑡+1 𝑠𝑡 = ℙ 𝑠𝑡+1 𝑠1, … , 𝑠𝑡 (no history of past states required)

• Assumes full observability of the state

• States and actions may be discrete or continuous

• Many problems can be formulated as MDPs!

– E.g., multi-armed bandits are MDPs with a single state

14
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Policies

• A policy 𝜋: 𝒮 → 𝒜 represents the behavioral strategy of an agent

– Policies may also be stochastic 𝜋 𝑎𝑡 𝑠𝑡 ∈ [0,1]

15

• Policy examples for Rooms:

– 𝜋0: maps each state st ∈ 𝒮 to a random
action at ∈ 𝒜

– 𝜋1 : maps each state st ∈ 𝒮 to action at =
𝑀𝑜𝑣𝑒𝑆𝑜𝑢𝑡ℎ ∈ 𝒜

– 𝜋2 : maps state st ∈ 𝒮 to action at =
𝑀𝑜𝑣𝑒𝑆𝑜𝑢𝑡ℎ ∈ 𝒜 if t is odd and select at
random otherwise .

1. How do we know which policy is better?

2. How can we improve a given policy?
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Returns

• The return of a state 𝑠𝑡 ∈ 𝒮 for a horizon ℎ given a policy 𝜋 is the
cumulative (discounted) future reward (ℎ may be infinite!):

𝐺𝑡 = ෍

𝑘=0

ℎ−1

𝛾𝑘 ℛ 𝑠𝑡+𝑘 , 𝜋 𝑠𝑡+𝑘 , 𝛾 ∈ [0,1]

16

• Rooms Example: 𝛾 = 0.99

– The chosen paths needs 18 steps to
reach the goal

– Thus, the return from the starting point
is: 𝐺1 = 𝑟1 + 𝛾𝑟2 + …+ 𝛾17𝑟18 =

= 𝛾17𝑟18 = 0.9917 ~ 0.843

• What would be the return 𝐺1, if the goal
isn‘t reached at all?

• What is the optimal value of 𝐺1?
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Value Functions

• The value of a state 𝑠𝑡 ∈ 𝒮 is the expected return of 𝑠𝑡 for a horizon ℎ ∈ ℕ
given a policy 𝜋:

𝑉𝜋 𝑠𝑡 = 𝔼[𝐺𝑡|𝑠𝑡]

• The action value of a state 𝑠𝑡 ∈ 𝒮 and action 𝑎𝑡 ∈ 𝒜 is the expected
return of executing 𝑎𝑡 in 𝑠𝑡 for a horizon ℎ ∈ ℕ given a policy 𝜋:

𝑄𝜋 𝑠𝑡, 𝑎𝑡 = 𝔼[𝐺𝑡|𝑠𝑡 , 𝑎𝑡]

17

• Rooms Example:

– 𝑉𝜋 and/or 𝑄𝜋 can be estimated by
averaging over several returns 𝐺𝑡
observed by executing a (fixed) 
policy 𝜋

• Value functions (𝑽𝝅 and/or 𝑸𝝅) can
be used to evaluate policies 𝝅
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Remark: Return / Value Estimation

• Estimating the return 𝐺𝑡 or the value 𝑄𝜋 𝑠𝑡, 𝑎𝑡 of state-action pair 
〈𝑠𝑡 , 𝑎𝑡〉 always has the following form:

ℛ 𝑠𝑡 , 𝑎𝑡 + 𝛾𝑋

• 𝑋 could be:

– The successor return 𝐺𝑡+1
• reward seqence must be known

– The successor value 𝑄𝜋 𝑠𝑡+1, 𝑎𝑡+1
• 〈𝑠𝑡+1, 𝑎𝑡+1〉 and 𝑄𝜋 must be known

– The expected successor value 𝔼 𝐺𝑡+1 𝑠𝑡+1, 𝑎𝑡+1
• 𝒫 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑎𝑡+1 , and 𝑄𝜋 must be known

18

Monte Carlo 
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Temporal-
Difference
Learning
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Programming
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Optimal Policies and Value Functions

• Goal: Find an optimal policy 𝜋∗ which maximizes the expected return
𝔼[𝐺𝑡|𝑠𝑡] for each state:

𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋𝑉
𝜋 𝑠𝑡 , ∀𝑠𝑡 ∈ 𝒮

• The optimal value function is defined by:

𝑉∗ 𝑠𝑡 = 𝑉𝜋
∗
𝑠𝑡 = 𝑚𝑎𝑥𝜋𝑉

𝜋 𝑠𝑡
𝑄∗ 𝑠𝑡, 𝑎𝑡 = 𝑄𝜋∗ 𝑠𝑡 , 𝑎𝑡 = 𝑚𝑎𝑥𝜋𝑄

𝜋 𝑠𝑡, 𝑎𝑡

• When 𝑉∗ or 𝑄∗ is known, 𝜋∗can be derived.

19

How to find an optimal policy or the
optimal value function?
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Automated Planning

• Goal: Find (near-)optimal policies 𝜋∗ to solve complex problems

• Use (heuristic) lookahead search on a given model ෡𝑀 ≈ 𝑀 of the problem

22



Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme 

WiSe 2019/20, Automated Planning

Planning Approaches (Examples)

23

Tree Search Evolutionary Computation Dynamic Programming



 Dynamic Programming
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Dynamic Programming

• Dynamic refers to sequential / temporal component of a problem

• Programming refers to optimization of a program

• We want to solve Markov Decision Processes (MDPs):
– MDPs are sequential decision making problems

– To find a solution, we need to optimize a program (policy 𝜋)

25
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Policy Iteration

• Dynamic Programming approach to find an optimal policy 𝜋∗

• Starts with a (random) guess 𝜋0
• Consists of two alternating steps given 𝜋𝑛:

• Terminates when 𝜋𝑖+1 = 𝜋𝑖 or when a time budget runs out

• Policy Iteration forms the basis for most Planning and Reinforcement 
Learning algorithms!

26

Policy Evaluation Policy Improvement

compute 𝑉𝜋𝑛 and/or 𝑄𝜋𝑛 maximize 𝑉𝜋𝑛/𝑄𝜋𝑛
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Value Iteration

• Dynamic Programming approach to find the optimal value function 𝑉∗

• Starts with a (random) guess 𝑉0

• Iteratively updates the value estimate 𝑉𝑛(𝑠𝑡) for each state 𝑠𝑡 ∈ 𝒮

𝑉𝑛+1 𝑠𝑡 = max
𝑎𝑡∈𝒜

{ℛ 𝑠𝑡, 𝑎𝑡 + 𝛾 ෍

𝑠𝑡+1∈𝒮

𝒫 𝑠𝑡+1 𝑠𝑡, 𝑎𝑡 𝑉
𝑛(𝑠𝑡+1)}

• Terminates when 𝑉𝑛+1 = 𝑉𝑛 or when a time budget runs out

• The optimal action-value function 𝑄∗ is computed analogously

• 𝑉∗ and/or 𝑄∗ can be used to derive an optimal policy 𝜋∗

• Do you see the link to Policy Iteration?

27

Policy EvaluationPolicy Improvement
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Value Iteration - Example

• Optimal „Value Map“ in Rooms (𝛾 = 0.99): for each state 𝑠𝑡 ∈ 𝒮

– 𝑉𝑛+1 𝑠𝑡 = max
𝑎𝑡∈𝒜

{ℛ 𝑠𝑡 , 𝑎𝑡 + 𝛾σ𝑠𝑡+1∈𝒮 𝒫 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝑉
𝑛(𝑠𝑡+1)}

28

Remember: 
ℛ 𝑠𝑡 , 𝑎𝑡 + 𝛾𝑋

In this case

𝑋 = ෍

𝑠𝑡+1∈𝒮

𝒫 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝑉
𝑛(𝑠𝑡+1)
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Value Iteration - Example

• Optimal „Value Map“ in Rooms (𝛾 = 0.99): for each state 𝑠𝑡 ∈ 𝒮

– 𝑉𝑛+1 𝑠𝑡 = max
𝑎𝑡∈𝒜

{ℛ 𝑠𝑡 , 𝑎𝑡 + 𝛾σ𝑠𝑡+1∈𝒮 𝒫 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝑉
𝑛(𝑠𝑡+1)}

29
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Advantages and Disadvantages of DP

• General approach (does not require explicit domain knowledge)

• Converges to optimal solution

• Does not require exploration-exploitation (all states are visited anyway)

• Computational costs

• Memory costs

• Availability of an explicit model M = 〈𝒮,𝒜,𝒫,ℛ〉

30

?
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Intermediate Summary

• What we know so far:
– Markov Decision Processes (MDPs)

– Policies and Value Functions

– Optimally solve MDPs with Dynamic Programming

• What we don‘t know (yet):
– How to find solutions in a more scalable way?

– How to react to unexpected events?

– How to find solutions without a model?

31



Monte Carlo Planning
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Global Planning and Local Planning

• Global Planning
– considers the entire state space 𝒮 to approximate 𝜋∗

– produces for each state 𝑠𝑡 ∈ 𝒮 a mapping to actions 𝑎𝑡 ∈ 𝒜

– typically performed offline (before deploying the agent)

– Examples: Dynamic Programming (Policy and Value Iteration)

• Local Planning
– only considers the current state 𝑠𝑡∈ 𝒮 (and possible future states) to

approximate 𝜋∗(𝑠𝑡)

– recommends an action 𝑎𝑡 ∈ 𝒜 for current state 𝑠𝑡∈ 𝒮

– can be performed online (interleaving planning and execution)

– Examples: Monte Carlo Tree Search

33



Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme 

WiSe 2019/20, Automated Planning

Global Planning vs. Local Planning

34

Global Planning Local Planning
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Monte Carlo Planning

• Dynamic Programming always assumes full knowledge of the underlying
MDP M = 〈𝒮,𝒜,𝒫, ℛ〉

– Most real-world applications have extremely large state spaces

– Especially 𝒫 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 is hard to pre-specify in practice!

• Monte Carlo Planning only requires a generative model as blackbox
simulator ෡𝑀 ≈ M

– Given some state 𝑠𝑡 ∈ 𝒮 and action 𝑎𝑡∈ 𝒜, the generative model
provides a sample 𝑠𝑡+1 ∈ 𝒮 and 𝑟𝑡 = ℛ(𝑠𝑡, 𝑎𝑡)

– Can be used to approximate 𝑉∗ or 𝑄∗ via statistical sampling

– Requires minimal domain knowledge ( ෡𝑀 can be easily replaced)

35
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Explicit Model vs. Generative Model

• Generative model can be easier implemented than explicit probability
distributions!

36

?

Real Environment Environment Model
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Planning with Generative Model

37
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Monte Carlo Rollouts (MCR)

• Goal: Given a state 𝑠𝑡 ∈ 𝒮 and a policy 𝜋𝑟𝑜𝑙𝑙𝑜𝑢𝑡 , we want to find the
action 𝑎𝑡 ∈ 𝒮 which maximizes 𝑄𝜋𝑟𝑜𝑙𝑙𝑜𝑢𝑡 𝑠𝑡, 𝑎𝑡 = 𝔼[𝐺𝑡|𝑠𝑡 , 𝑎𝑡]

• Approach: Given a computation budget of 𝐾 simulations and a horizon ℎ

– Sample 𝐾 action sequences (= plans) of length ℎ from 𝜋𝑟𝑜𝑙𝑙𝑜𝑢𝑡

– Simulate all plans with generative model ෡M and compute the return
𝐺𝑡 for each plan

– Update estimate of 𝑄𝜋𝑟𝑜𝑙𝑙𝑜𝑢𝑡 𝑠𝑡, 𝑎𝑡 = 𝔼[𝐺𝑡|𝑠𝑡 , 𝑎𝑡]*

– Finally: Select action 𝑎𝑡 ∈ 𝒮 with highest 𝑄𝜋𝑟𝑜𝑙𝑙𝑜𝑢𝑡 𝑠𝑡, 𝑎𝑡

*only estimate 𝑄𝜋𝑟𝑜𝑙𝑙𝑜𝑢𝑡 𝑠𝑡, 𝑎𝑡 of the first action 𝑎𝑡 in each plan!

38
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Why do Monte Carlo Rollouts work?

• MCR estimates value function 𝑄𝜋𝑟𝑜𝑙𝑙𝑜𝑢𝑡 𝑠𝑡, 𝑎𝑡 of 𝜋𝑟𝑜𝑙𝑙𝑜𝑢𝑡 via sampling

• Final decision is a maximization of 𝑄𝜋𝑟𝑜𝑙𝑙𝑜𝑢𝑡 𝑠𝑡, 𝑎𝑡

39

• MCR makes always decisions with the
same or better quality than 𝜋𝑟𝑜𝑙𝑙𝑜𝑢𝑡

• Thus, decision quality depends on 
𝜋𝑟𝑜𝑙𝑙𝑜𝑢𝑡 and the simulation model
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Monte Carlo Tree Search (MCTS)

40

• Current state-of-the-art algorithm for Monte Carlo Planning. Used for:

– board games like Go, Chess, Shogi

– combinatorial optimization problems like Rubix Cube

• Approach: Incrementally construct and traverse a search tree given a 
computation budget of 𝐾 simulations and a horizon ℎ

– nodes represent states 𝑠𝑡 ∈ 𝒮 (and actions 𝑎𝑡 ∈ 𝒜)

– search tree is used to „learn“ ෠𝑄 ≈ 𝑄∗ via blackbox simulation
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Monte Carlo Tree Search Phases

41

• Selection

• Expansion

• Evaluation/Simulation

• Backup

𝑠𝑡

𝑠𝑡+1
1 𝑠𝑡+1

2

𝑠𝑡+2
1 𝑠𝑡+2

2

𝑎𝑡
1 𝑎𝑡

2

𝑎𝑡+1
1 𝑎𝑡+1

2

current state in „real world“
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Monte Carlo Tree Search - Selection

42

• Selection

• Expansion

• Evaluation/Simulation

• Backup

𝑠𝑡

𝑠𝑡+1
1 𝑠𝑡+1

2

𝑠𝑡+2
1 𝑠𝑡+2

2

Example Selection Strategies:
• Random
• Greedy
• 𝜖-Greedy
• UCB1

Exploration-Exploitation!!!

Multi-Armed Bandits
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Monte Carlo Tree Search - Expansion

43

• Selection

• Expansion

• Evaluation/Simulation

• Backup

𝑠𝑡+3
1

𝑠𝑡

𝑠𝑡+1
1 𝑠𝑡+1

2

𝑠𝑡+2
1 𝑠𝑡+2

2
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Monte Carlo Tree Search - Expansion

44

• Selection

• Expansion

• Evaluation/Simulation

• Backup

?

Example Evaluation Strategies:    
• Rollouts (e.g., Random)
• Value Function 𝑉𝜋 𝑠𝑡 (e.g., 

Reinforcement Learning)

𝑠𝑡

𝑠𝑡+1
1 𝑠𝑡+1

2

𝑠𝑡+2
1 𝑠𝑡+2

2

𝑠𝑡+3
1
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Monte Carlo Tree Search - Backup
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• Selection

• Expansion

• Evaluation/Simulation

• Backup

𝑠𝑡

𝑠𝑡+1
1 𝑠𝑡+1

2

𝑠𝑡+2
1 𝑠𝑡+2

2

𝑠𝑡+3
1

?

Remember: 

ℛ 𝑠𝑡, 𝑎𝑡 + 𝛾𝑋

In this case 𝑋 = 𝐺𝑡+1
(return from next state 𝑠𝑡+1)
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Summary

• What we know so far:
– Markov Decision Processes (MDPs)

– Policies and Value Functions

– Optimally solve MDPs with Dynamic Programming

– Approximately solve MDPs with Monte Carlo Search

• What we don‘t know (yet):
– How to find solutions without a model?
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Thank you!


