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Decision Making

* Goal: Autonomously select actions to solve a (complex) task
— time could be important (but not necessarily)
— maximize the expected reward for each state

reward,
observation

environment
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Multi-Armed Bandits

 Multi-Armed Bandit: situation, where you have to learn to make a good
(long-term) choice
* Explore choices to gather information (= Exploration)
— Example: random choice
* Prefer promising choices (= Exploitation)
— Example: greedy choice (e.g., using argmax)
* A good Multi-Armed Bandit solution should always balance between
Exploration and Exploitation
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Multi-Armed Bandits Example

 c-greedy (e > 0):

With probability €, select randomly
1 — €, select choice highest average reward

— Many approaches use e-greedy with annealing €

« UCB1 (Upper Confidence Bound):

— Select by maximizing:
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Sequential Decision Making

* Goal: Autonomously select actions to solve a (complex) task

— time is important (actions might have long term
consequences)

— maximize the expected cumulative reward for each state

reward,
observation

environment
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Sequential Decision Making Example

* Tetris
— Actions:
* Move Left, Right, Down
* Rotate clockwise
* Do Nothing

— Goals:
* Per time step: Whatever ...
e Short-term: Fill the gaps

* Long-term: Don‘t let stack size exceed
board height
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Markov Decision Processes

* A Markov Decision Process (MDP) is definedas M = (S, A, P, R):
— Sis a (finite) set of states
— A is a (finite) set of actions

— P(s¢p1l8:,a¢) € [0, 1] is the probability for reaching s;,; € S when
executinga; € Ains; €3S

— R(st a;) € Ris areward function

reward,
observation
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Markov Decision Processes

 MDPs formally describe environments for Sequential Decision Making
* All states s; € § are Markov such that
P(sirqlse) = P(S¢41]51, -, S¢) (no history of past states required)
e Assumes full observability of the state
e States and actions may be discrete or continuous
* Many problems can be formulated as MDPs!
— E.g., multi-armed bandits are MDPs with a single state

reward,
observation
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Tetris as MIDP

* Define Tetrisas MDP M = (S, A, P, R):

— States §: describe board size, stone position,
and current stack

— Actions A: move left/right/down, rotate,
nothing

— Transitions P: deterministic movement of
stone, random initialization of next stone

— Rewards R: depend on actual goal
* Short-term: penalize each gap in stack
with -1
* Long-term: if stack size exceeds board
height, penalize agent with -1
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Policies

e Apolicym:S = A represents the behavioural strategy of an agent
— Policies may also be stochastic w(a;|s;) € [0,1]

* Tetris Examples:

— To: maps each state s; € S to a random
actiona; € A

— 774 : maps each state s; € S to action a; =
MoveDown € A

— T, : maps each state s; € & with even time steps
t to action a; = MoveDown € A and a;=
MovelLeft € A otherwise

* How do we know which policy is better?
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Returns

* The return of a state s; € S for a horizon h given a policy m is the

cumulative (discounted) future reward (h may be infinite!):
h—1

Gy = z Vk R(5t+k»n(5t+k))»)’ € [0,1]
k=0

e Tetris Example:
— Play a Tetris game given a policy
— Record all rewards r: = R(s¢, a;) and their resp.
time steps t

— Compute return G, = Y*Z1y* r.,y € [0,1]

* Discount factor y is used to weight future reward
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Value Functions

* The value of a state s; € § is the expected return of s; for a horizon h € N
given a policy m:
V™(st) = E[G¢|s¢]

* The action value of a state s; € & and action a; € A is the expected
return of executing a; in s; for a horizon h € N given a policy m:

Q" (s, ar) = E[Gt|s¢, at]

e Tetris Example:

— V™ and/or Q™ can be computed by averaging
over several returns G; observed by playing with
a (fixed) policy

* Value functions (V™ and/or Q™) can be used to
evaluate policies it
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Optimal Policies and Value Functions

e Goal: Find an optimal policy m* which maximizes the expected return
E[G¢|s¢] for each state:

n* = argmax, V*(s;),Vs; €S

 The optimal value function is defined by:

V*(sy) = Ve (st) = max V™ (s¢)
Q*(sp,ar) = Qn* (st, ar) = max, Q™ (s, ar)

* When V" or Q" is known, m*can be derived.
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Automated Planning

e Goal: Find (near-)optimal policies =™ to solve complex problems

* Use (heuristic) lookahead search on a given model M ~ M of the problem

agent reward, model
\‘&/
action

rewa rd" environment
observation
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Planning Approaches (Examples)
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Dynamic Programming

* Dynamic refers to sequential / temporal component of a problem

* Programming refers to optimization of a program

* We want to solve Markov Decision Processes (MDPs):

— MDPs are sequential decision making problems
— To find a solution, we need to optimize a program (policy )
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Policy Iteration

* Dynamic Programming approach to find an optimal policy *

e Starts with a (random) guess m
* Consists of two alternating steps given m,;:

7 N\

Policy Evaluation Policy Improvement

* Terminates when ;1 = m; or when a time budget runs out

* Policy Iteration forms the basis for most Planning and Reinforcement
Learning algorithms!
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Value Iteration

* Dynamic Programming approach to find the optimal value function V*

* Starts with a (random) guess VV°
 Iteratively updates the value estimate V" (s;) for each state s; € §

VT s) = max(R(su.a) +y Y Plseralse @)V (5er)

St+1€eS

* Terminates when V**t1 = V™ or when a time budget runs out
* The optimal action-value function Q" is computed analogously

 V*and/or Q" can be used to derive an optimal policy *

* Do you see the link to Policy Iteration?
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Advantages and Disadvantages of DP

* General approach (does not require explicit domain knowledge)

* Converges to optimal solution

* Does not require exploration-exploitation (all states are visited anyway)
 Computational costs

* Memory costs

* Availability of an explicit model M = (S5, A, P, R)
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Intermediate Summary
 What we know so far:
— Multi-armed bandits
— Markov Decision Processes (MDPs)
— Policies and Value Functions
— Optimally solve MDPs with Dynamic Programming

 What we don‘t know (yet):
— How to find solutions in a more scalable way?
— How to find solutions without a model?
— How to react to unexpected events?
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Global Planning and Local Planning

* Global Planning

— considers the entire state space § to approximate ™

— produces for each state s; € S a mapping to actions a; € A
— typically performed offline (before deploying the agent)

— Examples: Policy and Value Iteration

* Local Planning

— only considers the current state s;€ S (and possible future states) to
approximate m*(s;)

— recommends an action a; € A for current state s,€ §
— can be performed online (interleaving planning and execution)
— Examples: Monte Carlo Tree Search
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Monte Carlo Planning

 Dynamic Programming always assumes full knowledge of the underlying
MDPM = (S5,A,P,R)

— Most real-world applications have extremely large state spaces
— Especially P(s¢41|S¢, a;) is hard to pre-specify in practice!

* Monte Carlo Planning only requires a generative model as blackbox
simulator ¥ ~ M

— Given some state s; € § and action a,€ A, the generative model
provides a sample s;,1 € S and r; = R(s¢, a;)

— Can be used to approximate IV* or Q™ via statistical sampling

— Requires minimal domain knowledge (M can be easily replaced)
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Explicit Model vs. Generative Model

* Generative model can be easier implemented than explicit probability
distributions!

Real Environment Environment Model
e S
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SoSe 2019, Automated Planning distributed systems group



Explicit Model vs. Generative Model

* Generative model can be easier implemented than explicit probability
distributions!

* Example: Throwing two dices

— Explicit Model:

Total | 2 | 3 | 4 | 5 | 6|7 89 10 uln

Prob. 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

— Generative Model:
* Generate two random numbers ranging from 1 to 6 @
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Monte Carlo Rollouts

* Goal: Given a state s; € § and a policy T,5110ut » W€ Want to find the
action a; € § which maximizes Q™rollout(s,, a;) = E[G¢|St, at]

e Approach: Given a computation budget of K simulations and a horizon h
— Sample K action sequences (= plans) of length h from T,5110ut

— Simulate all plans with generative model M and compute the return
G, for each plan

— Update estimate of Q™rollout (s,, a;) = E[G;|ss, a;]

— Finally: Select action a; € § with highest Q™rollout(s,, a;)
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Monte Carlo Rollouts Demonstration

Agent

Goal

Gives reward of +1
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Automated Planning: Recap

action
/'_\
reward, eI
%
action

——
agent

reward,
observation
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Monte Carlo Rollouts and Policy Iteration

* Goal: Given a state s; € § and a policy T,51104t ,» We Want to find the action
a; € A which maximizes Q™rollout(s;, a;) = E[G¢|s;, as]

e Approach: Given a computation budget of K simulations and a horizon h
— Sample K action sequences (= plans) of length h from T,5110ut

— Simulate all plans with generative model M and compute the return Gt
for each plan

— Update estimate of Q™rollout(s,, a,) = E[G|s;, a,] ™) Evaluation
— Finally: Select action a; € § with highest Q™rollout(s,, a,) @ Improvement

* Monte Carlo Rollouts lead to a better policy than 1T,.;;10u¢
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Monte Carlo Tree Search (MCTS)

* Goal: Given a state s; € § and a policy T,5110ut » W€ Want to find the
action a; € A which maximizes Q* (s, a;) = E[G¢|s;, a¢]

* Approach: Incrementally construct and traverse a search tree given a
computation budget of K simulations and a horizon h

— nodes represent states s; € S (and actions a; € A)

— search tree is used to ,learn” Q = Q" via blackbox simulation
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MCTS Phases

 MCTS consists of four phases:

1. Selection

2. Expansion
3. Evaluation
4. Backup
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MCTS Phases - Selection

*  MCTS phases:
1. Selection:

— given state s; € §, select a; € A (until node is a leaf)

— How can we do this? ssssss exploration/exploitation
Expansion

Evaluation
Backup
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MCTS Phases - Selection

e MCTS phases:
1. Selection:

— given state s; € §, select a; € A (until node is a leaf)
— how can we do this? ) multi-armed bandits (e.g., UCB1)

Expansion
luati _ 2logN
Evaluation Miree(St) = ar.gmaxatecfl{Q(St» a;) +c N }
ag
Backup
at EA
e Fﬁ ..............................................
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MCTS Phases - Expansion

e MCTS phases:
1. Selection

2. Expansion
3. Evaluation
4

Backup
(Q(st,a1),Ng, + 1)
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MCTS Phases - Evaluation

*  MCTS phases:
1. Selection
2. Expansion

3. Evaluation: Estimate V(s;1)
4. Backup

(Q(St; al)i Na1 + 1)
S;+1 can be evaluated

with e.g., rollouts or (0 (s, as), Ng,)

an approximation of

Q (Str al) al

(0, 0) (0, 0)
v
(0,0)
meDrCLmnhoﬁpoplenThomyphanAndreasseo“melerFablaantzPraktlkumAUtonomesystemeW ..............................................
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MCTS Phases - Backup

*  MCTS phases:

i ~ ~ R(s¢, 1% —Q(s¢,
1. Selection 0(s, a;) « 0(s, ay) + (s¢ a1)+yN (Sj:) Q(sp.a1)
2. Expansion “
3. Evaluation
4. Backup
(Q(St) al)l Na1 + 1)
Update predAecessor (Q(sg, az), Ny, )
values with V (s;41)
aq
(0,0)
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MCTS and Policy Iteration

 MCTS phases:

mmmmmm)  Policy Evaluation (estimate Q*(s;, a;))

1. Selection ) Policy Improvement (e.g., maximize UCB1)
2. Expansion

3. Evaluation

4.

Backup

 Given infinite simulations K, MCTS converges to the optimal best first
tree for state s; € §, which corresponds to the optimal policy 7" (s;)
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Summary

* Dynamic Programming vs. Monte Carlo Planning

Algorithm Improvement Model Optimality?
Type

Policy V™ and/or Q™ Maximize V™ Explicit
lteration of current and/or QT
Value V™ via Bellman  Maximize current Explicit Yes
Iteration Update yn
MC Rollouts QTrollout of Maximize Q™rollout  Generative No (depends
Trollout (at the end only) ON Tro11out)
MCTS QTtree of Maximize Q™tree  Generative Yes (with
current Meyee inifinite time)
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Summary
 What we know so far:
— Multi-armed bandits
— Markov Decision Processes (MDPs)
— Policies and Value Functions
— Optimally solve MDPs with Dynamic Programming
— Approximately solve MDPs with Monte Carlo Search

 What we don‘t know (yet):
— How to find solutions without a model?
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Thank youl!



