

Praktikum Autonome Systeme

An Introduction to Autonomous Systems

Prof. Dr. Claudia Linnhoff-Popien Thomy Phan, Andreas Sedlmeier, Fabian Ritz <u>http://www.mobile.ifi.lmu.de</u>

WiSe 2019/20

→ Autonomous Systems

Definition: A system, which can operate without human intervention.

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme WiSe 2019/20, An Introduction to Autonomous Systems

3

(Possible) Real-World Applications

Smart Grids / Cities

Intelligent / Mobile Networks

Industry 4.0

Robotics

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme WiSe 2019/20, An Introduction to Autonomous Systems

Properties of Autonomous Systems

- Self-CHOP
 - Self-Configuration
 - Self-Healing
 - Self-Optimization
 - Self-Protection
- More Self-Properties
 - Self-Learning
 - Self-Organization
 - Self-Regulation

M. Salehie and L. Tahvildari, Autonomic Computing: Emergent Trends and Open Problems, ACM SIGSOFT Software Engineering Notes, 2005

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

WiSe 2019/20, An Introduction to Autonomous Systems

5

Properties of Autonomous Systems

- Self-CHOP
 - Self-Configuration
 - Self-Healing
 - Self-Optimization
 - Self-Protection
- More Self-Properties
 - Self-Learning
 - Self-Organization
 - Self-Regulation

M. Salehie and L. Tahvildari, Autonomic Computing: Emergent Trends and Open Problems, ACM SIGSOFT Software Engineering Notes, 2005

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

WiSe 2019/20, An Introduction to Autonomous Systems

6

Challenges of Autonomous Systems

- Dynamic Environments
- High Complexity
- Many Constraints:
 - Perception
 - Computational and Memory Resources
 - Energy Consumption
 - Communication
- Safety and Risk
- Security
- Quality Management

→ Artificial Intelligence

Why Artificial Intelligence?

AlphaGo (Zero)

https://deepmind.com/research/case-studies/alphago-the-story-so-far

OpenAl Five

https://openai.com/blog/openai-five/

AlphaStar

https://deepmind.com/blog/article/alphastar-mastering-real-timestrategy-game-starcraft-ii

Walking Robot

https://bair.berkeley.edu/blog/2018/12/14/sac/

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme WiSe 2019/20, An Introduction to Autonomous Systems

Machine Learning

- **Goal:** Create programs that learn how to solve complex problems
- Learn statistical models from experience / data

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme WiSe 2019/20, An Introduction to Autonomous Systems

Why Machine Learning?

- **Goal:** Create programs that learn how to solve complex problems
- Many problems cannot be solved by engineering handcrafted solutions
 - Too many aspects to consider
- Too many rules
 Hard adaption to changes
 Hard generalization
 Example:
 How to classify a star?
 Has five corners?

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

Types of Machine Learning

Unsupervised Learning

Supervised Learning

Reinforcement Learning

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

Challenges of Machine Learning

- Data Availability
- Data Complexity
- Efficiency
- Compactness
- Interpretability
- Robustness
- Adaptivity

Automated Planning

- **Goal:** Find (near-)optimal strategies to solve complex problems
- Use (heuristic) lookahead search on a **given model** of the problem

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

Why Automated Planning?

• **Goal:** Find (near-)optimal strategies to solve complex problems

- Planning is necessary, if **explicit reasoning** is required:
 - Consideration of risks and uncertainties
 - Consideration of hard constraints
- Planning is **flexible**:
 - Use the same method for different problems by replacing the model
 - Search for multiple alternative strategies

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

Planning Approaches (Examples)

Tree Search

Evolutionary Computation

Dynamic Programming

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

Challenges of Automated Planning

- Model Availability
- Model Uncertainty
- Computational and Memory Efficiency
- Real-time Planning

→ Decision Making

Decision Making

- **Goal:** Autonomously select actions to solve a (complex) task
 - time could be important (but not necessarily)
 - maximize the expected reward for each state

- Consider a situation, where you have to make a choice
- **Example:** What are you going to do after this lecture?

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

- Consider a situation, where you have to make a **choice**
- **Example:** What are you going to do after this lecture?

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

- Consider a situation, where you have to make a choice
- **Example:** What are you going to do after this lecture?

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

- Consider a situation, where you have to make a **choice**
- **Example:** What are you going to do after this lecture?

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

Multi-Armed Bandits

- Multi-Armed Bandit: situation, where you have to <u>learn</u> how to make a good (long-term) <u>choice</u>
- Explore choices to gather information (= Exploration)
 - Example: random choice
- **Prefer** promising choices (= Exploitation)
 - Example: greedy choice (e.g., using argmax)

 A good Multi-Armed Bandit solution should always balance between Exploration and Exploitation

Decision Making Challenges and Outlook

- Sequential Decision Making
- Problem Complexity
- Sparse/Delayed Feedback
- Sample Efficiency
- Uncertainty

Thank you!