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I. Motivation & Basics
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Why consider uncertainty?
Reliability and dependability requirements in industrial systems

Low acceptable range for wrong predictions or decisions

This differs from "Web-ML" applications where wrong predictions are often acceptable/accepted

Most state-of-the-art "Web-ML" approaches ignore uncertainty

Example "Web-ML" VS "Industry-ML"

Web-ML: Wrong classification of a male website visitor as female  display of "wrong category"
advertisement

Industry-ML: Wrong classification of a medical lesion image  malignant cancer stays undetected

→

→

Andreas Sedlmeier / LMU Munich / Talk@TRAIL 18.12.2020 3



Current Situation
Standard Deep Learning (DL) methods do not provide information
about the uncertainty of their predictions

Reason: The neural networks (NN) produce point estimates

Implicit assumption: The point estimate is representative
(This could be wrong, e.g. bc of multimodality, more later)

[Image src] https://xkcd.com/1838/
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Basics
Basic Premise: Models are used to perform statistical inference
Problem: Predictions are prone to noise, wrong model inference & inductive assumptions

Learning Phase: Optimization & Prediction

Approaches: (Approximate) Bayesian & Ensemble Learning

Application Fields: Computer Vision, Image Processing, Medical Image Analysis, Natural Language
Processing, Reinforcement Learning (e.g. Robotics), Active Learning
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Types of Uncertainty

Aleatoric
aka data uncertainty aka risk 

Stochasticity / Noise

Irreducable

Not a property of the model

Homoscedastic / Heteroscedastic

Epistemic
aka knowledge uncertainty
lack of data to infer the underlying system's data generating function

reducable by collecting more data

Predictive Uncertainty = Epistemic + Aleatoric

[∗]

 For a discussion on why the differentiation between aleatoric/epistemic is essential, see e.g.
Osband, Ian. "Risk versus uncertainty in deep learning: Bayes, bootstrap and the dangers of dropout." NIPS Workshop on Bayesian Deep Learning. Vol.
192. 2016.

[∗]
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Multimodality

Cannot be captured by models creating point
predictions

Often encountered with inverse problems

E.g. determine the angle a two-linked robot arm
should move to achieve a target location

[Figure 5.18] C. M. Bishop. Pattern recognition & Machine Learning, 2006.
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Multimodality toy example:

Sinus  unimodal

Inverse Sinus  multimodal

Classic NN (using MSE as loss) fails

Common solution approach: Mixture Density
Networks (MDNs)

→
→

Image src: https://blog.otoro.net/2015/11/24/mixture-density-networks-with-tensorflow/
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II. Uncertainty Modelling Techniques
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Aleatoric Uncertainty (unimodal):

Mean variance estimation (MVE) 

Interpret outputs  and  as samples from a
(heteroscedastic) Gaussian

Train by minimizing the negative log likelihood (NLL)

For a review, see 

[1]

μ(x) σ(x)

[2]

[1] Nix, David A., and Andreas S. Weigend. "Estimating the mean and variance of the target probability distribution." Proceedings of
1994 ieee international conference on neural networks (ICNN'94). Vol. 1. IEEE, 1994.
[2] Khosravi, Abbas, et al. "Comprehensive review of neural network-based prediction intervals and new advances." IEEE Transactions
on neural networks 22.9 (2011): 1341-1356.
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Aleatoric Uncertainty (multimodal):

Mixture Density Networks (MDNs) - Bishop (1994) 

Idea: replace the Gaussian distribution of the MVE with a
mixture model

Probability density is a linear combination of the form:

p(t∣x) = α (x)ϕ (t∣x)
i=1

∑
m

i i

with  being the mixing coefficients and  the
conditional density of the target vector  for the  component

[1]

α (x)i ϕ (t∣x)i

t ith

Note: Most formulas in modern work use  instead of  for the mixing coefficients and  instead of  for the label.
[1] Bishop, Christopher M. (1994). Mixture density networks. Technical Report. Aston University, Birmingham. (Unpublished)

z α y t
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Bayesian Neural Networks (BNNs)

How can NNs correctly estimate uncertainty?

Bayesian Neural Networks: Neil, Radford - 1995 

Combine Bayesian Methods with NNs

Place probability distributions over model
parameters

For a long time practically unused, as method didn't
scale

[1]

[1] Neal, Radford M. Bayesian learning for neural networks. Vol. 118. Springer Science & Business Media, 2012.
[Figure 1] Shridhar, Kumar, Felix Laumann, and Marcus Liwicki. "A comprehensive guide to bayesian convolutional
neural network with variational inference." arXiv preprint arXiv:1901.02731 (2019).
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Bayesian Inference in BNNs

True posterior intractable = cannot be computed analytically 

Solution ~2015: Variational Inference (VI)

Goal: Approximate the posterior distribution over the weights of the NN

Considers the Bayesian Inference problem as an optimization problem

 approximate the posterior distribution over the weights of the NN with a variational distribution 
e.g. a simple Gaussian

[Further "reading"] DeepBayes2018 Workshop - Max Welling:
Advanced methods of variational inference: https://youtu.be/mCBnid-1slI

[1]

→ qθ

[1] Huge number of parameters in an NN as well as the functional form does not lend itself to exact integration
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Dropout

Dropout was initially introduced to combat overfitting in DNNs 

Idea: During Training, randomly drop (i.e. apply an independent
random Bernoulli mask to the) activations of the NN (except
output layer)

Has become one of the most popular modern approaches to
regularization in deep learning

[1]

[1] Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks from overfitting." The journal of machine learning research 15.1
(2014): 1929-1958.
[Image] Roffo, Giorgio. "Ranking to learn and learning to rank: On the role of ranking in pattern recognition applications." arXiv preprint
arXiv:1706.05933 (2017).
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Dropout Variational Inference aka MC Dropout

Yarin Gal proposes MC (Monte-Carlo) Dropout as a practical
approximate Bayesian inference technique 

Idea: Use Dropout during the prediction phase

Can also be applied to CNNs 

"In fact, we shall see that we can we can get uncertainty
information from existing deep learning models for free" 

We show that the dropout objective, in effect, minimises the
Kullback–Leibler divergence between an approximate
distribution and the posterior of a deep Gaussian process. 

[1]

[3]

[2]

[2]

[1] Gal, Yarin, and Zoubin Ghahramani. "Dropout as a bayesian approximation: Representing model uncertainty in deep learning."
international conference on machine learning. 2016.
[2] Gal, Yarin. "Uncertainty in deep learning." University of Cambridge 1.3 (2016).
[3] Gal, Yarin, and Zoubin Ghahramani. "Bayesian convolutional neural networks with Bernoulli approximate variational inference."
arXiv preprint arXiv:1506.02158 (2015).
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Critique:

Ian Osband (2018): 
Recent work has sought to understand dropout through a Bayesian lens, highlighting the connection
to variational inference and arguing that the resultant dropout distribution approximates a Bayesian
posterior. This narrative has proved popular despite the fact that [the] dropout distribution can be a
poor approximation to most reasonable Bayesian posteriors.

[1]

[1] Osband, Ian, John Aslanides, and Albin Cassirer. "Randomized prior functions for deep reinforcement learning." Advances in Neural Information Processing Systems. 2018.
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Problem1: Dropout distribution does not concentrate with observed data

Consequence: 

No agent employing dropout for posterior approximation can tell the difference between observing a
set of data once and observing it  times. This can lead to arbitrarily poor decision making [...]

Possible solution: Concrete Dropout: Tune the dropout rate from data 

Comment Osband: "Concrete dropout asymptotically improves the quality of the variational
approximation, but provides no guarantees on its rate of convergence or error relative to exact
Bayesian inference" 

[∗]

N ≫ 1
[1]

[∗∗]

[*] This would be a possible explanation, why Dropout failed for Out-of-distribution detection using epistemic uncertainty, as evaluated in:
A. Sedlmeier, et al. "Uncertainty-Based Out-of-Distribution Classification in Deep Reinforcement Learning," in 12th International Conference on Agents and Artificial Intelligence (ICAART 2020), 2020.
[**] Further discussion: What is the current state of dropout as Bayesian approximation?
https://web.archive.org/web/20190327225938if_/https://www.reddit.com/r/MachineLearning/comments/7bm4b2/d_what_is_the_current_state_of_dropout_as/
[1] Gal, Yarin, Jiri Hron, and Alex Kendall. "Concrete dropout." Advances in neural information processing systems. 2017.
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Problem 2: VI can severely underestimate model uncertainty

The objective function commonly used for VI is the ELBO (Expectation Lower Bound), which is
known to underestimate the posterior variance

For a comprehensive review see: Blei (2017): Variational inference: A review for statisticians 

"The relative accuracy of variational inference and MCMC is still unknown. We do know that
variational inference generally underestimates the variance of the posterior density; this is a
consequence of its objective function"

[1]

[1] Blei, David M., Alp Kucukelbir, and Jon D. McAuliffe. "Variational inference: A review for statisticians." Journal of the American statistical Association 112.518 (2017): 859-877.
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VI using different divergences

Possible solution to Problem 2: Use alpha-divergences as alternative to VI's KL objective

This avoids VI's uncertainty underestimation

Hernandez-Lobato: Black-box alpha divergence 

Yingzhen and Gal: Dropout inference in Bayesian neural networks with alpha-divergences 

[2]

[3]

[2] Hernandez-Lobato, Jose, et al. "Black-box alpha divergence minimization." International Conference on Machine Learning. PMLR, 2016.
[3] Li, Yingzhen, and Yarin Gal. "Dropout inference in Bayesian neural networks with alpha-divergences." arXiv preprint arXiv:1703.02914 (2017).
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Alternative approaches

Bayes by Backprop: Blundell, Charles, et al. "Weight Uncertainty in Neural Network." International
Conference on Machine Learning. 2015.

An alternative approach to VI was recently presented that tries to efficiently compute the Bayesian
posterior:

Dusenberry, Michael W., et al. "Efficient and Scalable Bayesian Neural Nets with Rank-1
Factors." arXiv preprint arXiv:2005.07186 (2020).
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(Deep) Gaussian Processes

What are Gaussian Processes (GPs)?

Nonparametric Bayesian Model - capacity grows with the available data

GPs define a probability distribution over possible functions

Considered the "gold standard for faithfully representing predictive uncertainty"

BUT: Scalability problems: The standard GP exhibits a runtime complexity O( )
and memory complexity of O( ), where N is the size of the dataset 

 Restriced to problems with fewer than about ten thousand training points

Recent scalability developments:

Deep Gaussian Processes: Combine DNNs with GPs 

Exact Gaussian Processes on a Million Data Points: [NeurIPS 2019]
Uses multi-GPU parallelization, linear conjugate gradients, accessing the
kernel matrix only through matrix multiplication, ...

N 3

N 2 [1]

→

[1]

 Leveraging uncertainty information from deep neural networks for disease detection: https://www.nature.com/articles/s41598-017-17876-z
 Damianou, Andreas, and Neil Lawrence. "Deep gaussian processes." Artificial Intelligence and Statistics. 2013.

[1]

[2]
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Further reading:

Rasmussen, C. E. & Williams, C. K. I. Gaussian processes for machine learning, vol. 1 (MIT
press Cambridge, 2006).

Gaussian Processes are Not So Fancy: https://planspace.org/20181226-
gaussian_processes_are_not_so_fancy/

Gaussian Process, not quite for dummies: https://yugeten.github.io/posts/2019/09/GP/

A Visual Exploration of Gaussian Processes: https://distill.pub/2019/visual-exploration-gaussian-
processes/
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Ensemble Techniques

Simple and scalable predictive uncertainty estimation using
deep ensembles
- Lakshminarayanan, Pritzel, Blundell (2017) 

One of the first works to apply ensemble ideas to deep NNs in
order to investigate predictive uncertainty performance:

proposes an alternative to Bayesian NNs

simple to implement

readily parallelizable

requires very little hyperparameter tuning

yields high quality predictive uncertainty estimates

[1]

Lakshminarayanan, Balaji, Alexander Pritzel, and Charles Blundell. "Simple and scalable predictive uncertainty estimation using deep
ensembles." Advances in neural information processing systems 30 (2017): 6402-6413.
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Details

For regression tasks, use a network that outputs  and 

Treat the observed values as samples from a (heteroscedastic) Gaussian

Train by minimizing the negative log-likelihood:

− log p (y ∣x ) =θ n n +
2

log σ (x)θ
2

+
2σ (x)θ

2
(y − μ (x))θ

2

constant

Coding detail: Enforce positivity of the  output neuron! 

To get the final prediction, the ensemble is treated as a uniformly-weighted mixture model (i.e.
predictions/predicted class probabilities are averaged)

μ(x) σ(x)

σ(x) [1]

[1] The authors enforce the positivity constraint on the variance by passing the second output through the softplus function log(1 + exp(·)), and add a minimum variance of  for numerical stability10−6

Andreas Sedlmeier / LMU Munich / Talk@TRAIL 18.12.2020 24



Evaluation

Problem: Empirical evidence of uncertainty estimates are not available in general, quality of predictive
uncertainty evaluation is a challenging task.

What do we want?

Well-calibrated predictions that are robust to model misspecification and dataset shift. -
Lakshminarayanan (2016)

What is calibration?

a frequentist notion of uncertainty

measures the discrepancy between predictions and (empirical) long-run frequencies

The quality of calibration can be measured by proper scoring rules such as log predictive
probabilities and the Brier score.

calibration is independant of accuracy: predictions can be accurate yet miscalibrated, as well as
calibrated but inaccurate
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What are scoring rules?

Scoring rules measure the quality of predictive uncertainty

They assigns a numerical score to a predictive distribution , with better calibrated predictions
receiving higher scores

Proper scoring rules:

minimizing NLL (Negative log likelihood, note: equal to softmax cross entropy loss)

Brier score (equivalent to the MSE between predicted probabilities and one-hot labels)

Generalization:

We also want generalization of the predictive uncertainty to domain shift (aka out-of-distribution
(OOD) data)

 measure if the network knows what it knows

p(y∣x)

→
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How to analyze calibration?

Reliability Diagrams aka Calibration Plots

Kendall :

"To form calibration plots for classification models, we discretize our model’s
predicted probabilities into a number of bins, for all classes and all pixels in the
test set. We then plot the frequency of correctly predicted labels for each bin of
probability values. Better performing uncertainty estimates should correlate
more accurately with the line  in the calibration plots."

Beluch :

"To assess calibration quality we determine whether the expected fraction of
correct classifications (as predicted by the model confidence, i.e.the uncertainty
over predictions) matches the observed fraction of correct classifications. When
plotting both values against each other, a well-calibrated model lies close to the
diagonal."

[1]

y = x

[2]

[1] Kendall, Alex, and Yarin Gal. "What uncertainties do we need in bayesian deep learning for computer vision?." Advances in neural information processing systems. 2017.
[2] Beluch, William H., et al. "The power of ensembles for active learning in image classification." Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2018.
[Further reading] Zadrozny, Bianca, and Charles Elkan. "Transforming classifier scores into accurate multiclass probability estimates." Proceedings of the eighth ACM
SIGKDD international conference on Knowledge discovery and data mining. 2002.
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Results in Lakshminarayanan et al.: 

Out-of-distribution (OOD) results on ImageNet

ImageNet trained only on dogs

Tested on non-dogs

Ensemble performs as expected:
Predictive entropy is a lot higher for the unknown
classes (non-dogs), i.e. the model is uncertain

while max. predicted probability is lower

[1]

[1] Lakshminarayanan, Balaji, Alexander Pritzel, and Charles Blundell. "Simple and scalable predictive uncertainty estimation using
deep ensembles." Advances in neural information processing systems 30 (2017): 6402-6413.
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OOD on MNIST:

Trained on MNIST, tested on combined MNIST (known) and
NotMNIST (unknown) data

Deep ensembles perform robust

MC Dropout produces overconfident wrong predictions

(This matches previous observation that VI can
underestimate uncertainty)

(Ensemble + AT: Adversarially trained ensemble)
As confidence is a continuous variable, it appears the authors binned the values using a bin-size of 0.1. (Paper does not state this
clearly).
Quote: "We filter out test examples, corresponding to a particular confidence threshold and plot the accuracy for this threshold."
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Thoughts on Bayesian NNs / Ensembles

Read (the introduction of) the Lakshminarayanan Paper for a highly interesting overview of the goal,
problem and methods in the field of uncertainty and probabilistic methods.

The quality of predictive uncertainty obtained using Bayesian NNs crucially depends on (i) the
degree of approximation due to computational constraints and (ii) if the prior distribution is ‘correct’,
as priors of convenience can lead to unreasonable predictive uncertainties.
[...]
Interestingly, dropout may also be interpreted as ensemble model combination where the predictions
are averaged over an ensemble of NNs (with parameter sharing). The ensemble interpretation
seems more plausible particularly in the scenario where the dropout rates are not tuned based on
the training data, since any sensible approximation to the true Bayesian posterior distribution has to
depend on the training data.
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Bootstrap Ensemble

Bootstrapped DQN (Deep Q-Network) proposed as efficient
ensemble architecture 

Single NN  ensemble members share most weights

Output-Layer is split into so-called "heads", representing the
individual ensemble outputs

Bootstrap training procedure implemented by using boolean
mask  training data set of each member differs slightly

[1]

→

→

[1] Osband, Ian, et al. "Deep exploration via bootstrapped DQN." Advances in neural information processing systems 29 (2016): 4026-
4034.
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Bootstrap Prior Networks

Improvement of the previous architecture to increase
ensemble diversity

Solution to the observation that naive ensembles
trained from random initializations can fit the data
exactly which leads to almost zero uncertainty
anywhere in the space

Adds output of a fixed (untrainable) prior network to
each head

[1] Osband, Ian, John Aslanides, and Albin Cassirer. "Randomized prior functions for deep reinforcement learning."
Advances in Neural Information Processing Systems. 2018.
[Figure 13] See supplementals of above paper
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III. Applications & Evaluations
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Computer Vision

Kendall, Gal, et al. : What uncertainties do we need in bayesian
deep learning for computer vision?
Interesting aspects:

Combine aleatoric and epistemic uncertainty modelling into single model:

MVE (they call it MAP inference) for aleatoric + MC Dropout for epistemic
uncertainty

Loss uses L1 distance (Laplacian Prior instead of L2 distance - Gaussian
prior)

Modelling uncertainty increases performance (works as loss attenuation)

Modelling aleatoric uncertainty increases performance more than
epistemic

Combining both results in best performance

Uncertainties behave as expected: Precision is lower, when image
contains more points that the model is uncertain about

Kendall, Alex, and Yarin Gal. "What uncertainties do we need in bayesian deep learning for computer vision?." Advances in neural information processing
systems. 2017.
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The power of ensembles for active learning in image
classification

CVPR 2018 (Authors from Bosch Center for Artificial Intelligence)

Compare ensemble-based architectures against Monte-Carlo
Dropout

Results:

Ensemble-based uncertainties outperform other methods of
uncertainty estimation (in particular MC Dropout)

"We find that the difference in active learning performance
can be explained by a combination of decreased model
capacity and lower diversity of MC Dropout ensembles"

Beluch, William H., et al. "The power of ensembles for active learning in image classification." Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2018.
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Evaluating Scalable Bayesian Deep Learning Methods for
Robust Computer Vision

CVPR 2020 (ETH Zürich & Uppsala University)

Confirm that ensembling consistently outperforms MC Dropout
and provides more reliable and practical uncertainty estimates

Depth Completion & Semantic Segmentation tasks

Attribute the success of ensembling to its ability to capture multi-
modality present in the posterior distribution

Gustafsson, Fredrik K., Martin Danelljan, and Thomas B. Schon. "Evaluating scalable bayesian deep learning methods for robust computer
vision." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. 2020.
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Other fields of application

RL

Kahn: "Uncertainty-aware reinforcement learning for collision avoidance" (Bootstrapping & Dropout)

Osband: "Deep exploration via bootstrapped DQN" as well as follow-up work

Sedlmeier: "Uncertainty-based Out-of-Distribution Classification in Deep Reinforcement Learning"

Medical

Leveraging uncertainty information from deep neural networks for disease detection
https://www.nature.com/articles/s41598-017-17876-z

[1] Kahn, Gregory, et al. "Uncertainty-aware reinforcement learning for collision avoidance." arXiv preprint arXiv:1702.01182 (2017).
[2] Osband, Ian, et al. "Deep exploration via bootstrapped DQN." Advances in neural information processing systems 29 (2016): 4026-4034.
[3] Sedlmeier, Andreas et al. "Uncertainty-based Out-of-Distribution Classification in Deep Reinforcement Learning." In Proceedings of the 12th International Conference on Agents and Artificial Intelligence
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Thank you! Questions?
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