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Scenario Co-Evolution
with Reinforcement Learning
and Evolutionary Algorithms
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Performance over Time
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Scenario Co-Evolution
as a Tool for Software Engineering
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(more) independent line of scenarios
with no immediate feedback for the
system-under-test

system-under-tests immediately
adapts to scenario evolution

Deploy All Oscar Nierstrasz, Marcus Denker,
Tudor Girba, Adrian Lienhard,
David Réthlisberger (2008).
Change-enabled software systems.
In Software-Intensive Systems and

p

Trustworthiness is aided

by deploying all tests so
they can be repeated at New Computing Paradigms.

the customer‘s site. Springer, Berlin, Heidelberg.
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Adaptation Cooldown
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N development
Criticality Focus progresses,
: the space of Deploy All
The importance of possible behavior
scenarios is weighted available to the Trustworthiness is aided
according to inverse adaptation by deploying all tests so
performance of system- mechanism they can be repeated at

under-test.

decreases. the customer's site.
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Software Architecture
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Al and the Compute Method

“Al researchers have often tried to
build knowledge into their agents,

this always helps in the short term,
and is personally satisfying to the
researcher, but

in the long run it plateaus and even
inhibits further progress, and

breakthrough progress eventually
arrives by an opposing approach
based on scaling computation by
search and learning.”

93

Rich Sutton.

The Bitter Lesson.
www.incompleteideas.net/
Incldeas/BitterLesson.html
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1)  “Al researchers have often tried to “The biggest lesson that can be

build knowledge into their agents, read from 70 years of Al research
is that general methods that
leverage computation are
ultimately the most effective, and
by a large margin.”

2) this always helps in the short term,
and is personally satisfying to the
researcher, but

3) inthe long run it plateaus and even
inhibits further progress, and

4)  breakthrough progress eventually
arrives by an opposing approach
based on scaling computation by
search and learning.”

Rich Sutton.
The Bitter Lesson.

www.incompleteideas.net/
Incldeas/BitterLesson.html
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AlexNet to AlphaGo Zero: A 300,000x Increase in Compute
10,000
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1,000
e AlphaZero
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o Xception ® T17 Dota 11
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® Seq2Seq ®ResNets
e GoogleNet
01
e AlexNet ® Visualizing and Understanding Conv Nets
e Dropout
00
00C
e DON
Qoo
2013 2014 2015 2016 207 2018 2019

Year

Dario Amodei and Danny Hernandez.
Al and Compute.
openai.com/blog/ai-and-compute/
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Computation Power used in Al

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute
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“Since 2012, the amount of
compute used in the largest Al
training runs has been increasing
exponentially with a 3.5 month
doubling time (by comparison,
Moore’s Law had an 18 month
doubling period).”

Dario Amodei and Danny Hernandez.
Al and Compute.
openai.com/blog/ai-and-compute/
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The PlanQK consortium. J
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> direct pathway to universal quantum computer
> similar architecture to classical computers
>only protoypes In laboratories

>currently < 100 qubits

% Google intel)
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adiabatic quantum computing
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practical guantum annealing
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Annealing

> potentially equally powerful
> architecture built for optimization
>avallable commercially

> currently > 2000 qubits

D:wave  FUJITSU

The Quantum Computing Company™
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all these currently relevant buzzwords are... Stephen Wolfram.

. ) . . Buzzword Convergence: Making
> derived from irreversible computation Sense of Quantum Neural
Blockchain Al.

> based on probabi”s’[ic processes http://blog.stephenwolfram.com/

2018/04/buzzword-convergence-
making-sense-of-quantum-
neural-blockchain-ai/

>t0 some extent compatible...?
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