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Gate Model

▹direct pathway to universal quantum computer

▹similar architecture to classical computers

▹only protoypes in laboratories

▹currently < 100 qubits
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Annealing

▹potentially equally powerful

▹archcitecture built for optimization

▹available commercially

▹currently > 2000 qubits
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How to Optimize on a Quantum Annealer
▹translate problem into a set of suitable constraints
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How to Optimize on a Quantum Annealer
▹translate problem into a set of suitable constraints

▹transfer QUBO to a quantum annealing machine

▹analyze probabilistic results to make informed decision
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AI and Quantum Computing

▹starts from random sample

▹probabilistic processes, statistical evaluation

▹computationally expensive, already running specialized hardware
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Peter Shor
www-math.mit.edu/~shor

Shor‘s Algorithm

▹runs on gate model quantum computer

▹prime factorization in polynomial time

▹would break RSA

Pointers

▹given unresolved scalability issues, 
larger keys might buy us time

▹post-quantum cryptography



Distributed Infrastructure 66

System

Optimization
Problems

extract

Optimization
System

deploy

answer



Distributed Infrastructure 67

System

Optimization
Problems

extract

Optimization
System

deploy

answer

how? who?



Distributed Infrastructure 68

System

Optimization
Problems

extract

Optimization
System

deploy

answer

how? who?
distributed fairly?



Distributed Infrastructure 69

System

Optimization
Problems

extract

Optimization
System

deploy

answer

how? who?

correct?

distributed fairly?



A Quick Quantum Conclusion

▹Quantum Computing promises new computing power when
exposing central (optimization) tasks of your business.

▹Exposing your business‘s optimization problems may require
a new approach to security.

▹Artificial Intelligence itself may lend itself to improve the results
of certain security tasks.
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Link: Quantum Neural Blockchain AI 71

Stephen Wolfram
www.stephenwolfram.com

http://blog.stephenwolfram.com/2018/04/buzzword-convergence-making-sense-of-quantum-neural-blockchain-ai/

all these currently relevant buzzwords are…

▹derived from irreversible computation

▹based on probabilistic processes

▹to some extent compatible…?



Thank You!

Thomas Gabor
Quantum Applications and Research Laboratory

Mobile and Distributed Systems Group
LMU Munich


