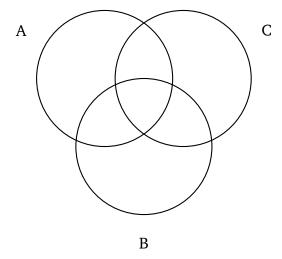
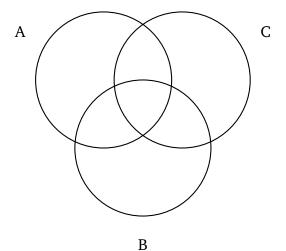


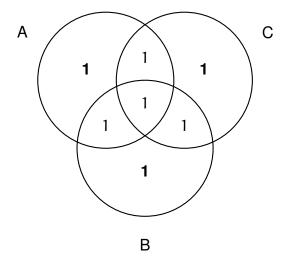
Rechnerarchitektur im Sommersemester 2019 Übungsblatt 12


Aufgabe 61: (H) Fehlererkennungscodes

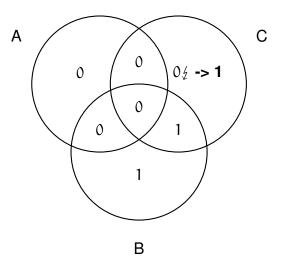
(8 Pkt.)


Wir gehen von folgender Struktur der Code-Wörter $d_1d_2d_3d_4p_1p_2p_3$ aus. Wobei $d_i (i \in \{1,2,3,4\})$ für das jeweilige Datenbit und $p_j (j \in \{1,2,3\})$ für das jeweilige Prüf- bzw. Paritätsbit steht. Die Paritätsbits zur Fehlererkennung bzw. Fehlerkorrektur für ein Datenwort $d_1d_2d_3d_4$ können anschaulich mit Hilfe eines Venn-Diagramms berechnet werden, in welchem sich die Bits wie folgt anordnen:

a. Berechnen Sie unter Verwendung des folgenden Venn-Diagramms die Prüfbits für das Datenwort **1111**. Verwenden Sie dazu **gerade Parität**. Tragen Sie zunächst die Datenbits in die für die Berechnung sinnvollen (Schnitt-)Mengen ein.



b. Gehen Sie nun davon aus, dass Sie ein mit dem zuvor beschriebenen Code codiertes Code-Wort 0001010 empfangen haben. Es wurde gerade Parität verwendet. Handelt es sich um ein gültiges Codewort? Falls nein, treffen Sie eine Aussage darüber, an welcher/welchen Stelle/Stellen mutmaßlich (ein) Bitfehler aufgetreten ist/sind. Verwenden Sie zur Berechnung das folgenden Venn-Diagramm. Korrigieren Sie (falls möglich/nötig) den/die Fehler innerhalb des Venn-Diagramms und geben Sie das (ggf. korrigierte) 4-Bit Datenwort an.



Antwort:

a. Damit die Anzahl der mit 1 belegten Bits in den Mengen A, B und C gerade ist, müssen alle 3 Paritätsbit p_1, p_2 und p_3 auf 1 gesetzt werden (sie zählen mit zur Anzahl bzw. prüfen sich selbst).

b.

Es ist kein gültiges Codewort. Bis auf Paritätsbit p_3 passt die Parität über alle Mengen. Dementsprechend ist davon auszugehen, dass Paritätsbit p_3 gekippt ist und 1 sein müsste, zumindest wenn man von einer minimalen Anzahl an gekippter Bits ausgeht. Mehr als 1 Bit kann ohnehin nicht mit Sicherheit korrigiert werden. Das Datenwort ist nicht betroffen und lautet 0001.

Aufgabe 64: (H) Einfachauswahlaufgabe: Darstellung von Speicherinhalten

(5 Pkt.)

Für jede der folgenden Fragen ist eine korrekte Antwort auszuwählen ("1 aus n").

a) Wie viele Bit stehen im ursprünglichen ASCII-Code zur Kodierung eines Zeichens zur Verfügung?

(i) 1

(ii) 7

(iii) 16

(iv) 128

b) Die Dezimalzahl 16.909.060 (01020304 Hexadezimal) soll als 32-Bit-Integer-Wert (Wortbreite) ab Speicheradresse 0000 gespeichert werden. Dabei kommt die Little Endian Byte-Anordnung zum Einsatz. Welche Antwort entspricht der resultierenden Speicherbelegung?

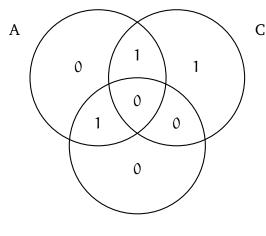
(i)		
Adresse	Wert	
0000	01	
0001	02	
0002	03	
0003	04	

(ii)	
Adresse	Wert
0000	02
0001	01
0002	04
0003	03

(iii)	
Adresse	Wert
0000	04
0001	03
0002	02
0003	01

(iv)	
Adresse	Wert
0000	03
0001	01
0002	02
0003	04

c) Welche Operation kann auf zwei gleichlange Codewörter angewendet werden, um durch Zählen der 1en im Ergebnis den Hamming-Abstand der Codewörter zu bestimmen?


(i) AND

(ii) OR

(iii) XOR

(iv) NOR

d) Gehen Sie nun davon aus, dass Sie folgendes Code-Wort 1010001 empfangen haben. Es wurde gerade Parität verwendet. Bei der Übertragung ist ein einzelner Bitfehler aufgetreten. Welches Paritätsbit ist betroffen?

В

(i) A

(ii) B

(iii) C

(iv) keins

e) Angenommen ein Speicherwort wird in einem kurzen Zeitintervall k mal gelesen oder geschrieben und befindet sich nach dem ersten Zugriff im Cache. Wie berechnet sich die Trefferrate (Hit Ratio) h?

(i) $h = \frac{k-1}{k}$

(ii) $h = \frac{k}{k-1}$

(iii) $h = (k-1) \cdot (k)$

(iv) $h = \frac{k}{k}$

Antwort:

- a. (ii)
- b. (iii)
- c. (iii)
- d. (ii)
- e. (i)