

Praktikum Mobile und Verteilte Systeme

Location & Positioning

Prof. Dr. Claudia Linnhoff-Popien Steffen Illium, Stefan Langer, André Ebert http://www.mobile.ifi.lmu.de SoSe 2019

- History of Positioning 1/3
- Magnetic Compass (475 B.C. in China, then 13th Century in Europe)
- Octant, then Sextant (18th Century): measurement of height of objects (sun, stars) above horizon, maximum height gives latitude
- **Chronometer** (maritime clock) with +/- 1s stability per day (Harrison, 1761), important for **longitude** determination
 - 1 second error means a 450 m longitude error at the equator (caused by the rotation of the earth)
- With Sextant/Octant best position accuracy is 1 NM

History of Positioning 1/3

- History of Positioning 2/3
- In 1714, following many maritime accidents (including more than 1500 vanished sailors with the loss of the fleet of admiral Clowdisley Shovell in 1707), the British government settled the **longitude act** to offer a 20.000 pounds reward (more than today's 10 millions €) for a method to determine the longitude.

- Expected accuracy (drift):
 - Maximum error: 0,5 degrees
 - 0,5 degrees = 30 nautical miles at the equator
 - = motion during 2 minutes of earth rotation
 - = 3 seconds per day during 40 days

(40 days = a 6 week journey from England to the West Indies)

distributed systems group

- History of Positioning 2/2
- John Harrison (1693 1776)
- Drift on H4 clock: 39.2 seconds after 47 days (4 times better than what was requested)

H2 (1741)

H4 (1761) 13cm 1.45 kg

- Positioning Fundamentals Components
- Positioning is determined by
 - one or several parameters observed by measurement methods
 - a positioning method for position calculation
 - a descriptive or spatial reference system
 - an infrastructure
 - protocols and messages for coordinating positioning

Positioning method	Observable	Measured by
Proximity sensing	Cell-ID, coordinates, RSS	Sensing for pilot signals
Lateration	Range or	Traveling time of pilot signals Path loss of pilot signals Traveling time differences of pilot signals
	Range difference	Traveling time difference of pilot signals Path loss difference of pilot signals
Angulation	Angle	Antenna arrays
Dead reckoning	Position and Direction of motion and Velocity and Distance	Any other positioning method and sensors: Gyroscope Accelerometer Odometer
Pattern matching or learning algorithms	Visual images or fingerprints	e.g., via Camera or Received signal strength

Positioning Fundamentals – Proximity Sensing

Proximity Sensing by a station using (short) range **pilot signals**:

Positioning Fundamentals – Laturation

Position is computed by a number of **range measurements** to known **fix-points**:

Positioning Fundamentals – Angulation

Position is derived by the measured of the **angle of an arriving signal** by multiple stations **at known fix-points**:

- Positioning Fundamentals Dead Reckoning
- From a **fixed starting position**, the movement of a mobile device is estimated (e.g., using velocity and direction of movement)
- Position becomes more inaccurate with each estimation
- Recalibration may be necessary

Positioning Fundamentals – Infrastructures

- Positioning Fundamentals Fingerprinting
- Position is derived by the comparison of location dependent online measurements with previously recorded data:

Indoor Navigation / Fingerprinting via:

- RSS measurements
- Bluetooth Beacon

- Positioning Fundamentals Reference Systems
- Goal of positioning: derive the geographic position of a target with respect to a spatial reference model
- Spatial reference model
 - Coordinate system (Ellipsoidal/Cartesian)
 - Geodetic datum, e.g., WGS-84
 - Projection (if location is to be represented on a map), e.g., Mercator projection

- Global satellite Positioning Systems Past
- Russian satellite Sputnik launched in 1957
 - Proof of the ability to track artificial objects in space via short wave radio signals
 - Worldwide triangulation program (BC-4): simultaneously photographing reflective satellites by several sites separated by some 4000 km
 - Doppler shift in the signal broadcast by a satellite could be used to determine exact time of closest approach. Together with the ephemerides this leads to precise positioning anywhere in the world.
- Navy Navigation Satellite System (NNSS), also called TRANSIT
 - Predecessor of GPS
 - Six satellites / 1100km altitude
 - Primarily for vessel and aircraft positioning
 - 1m accuracy if point was occupied for several days
 - A satellite passed overhead only every 90 minutes

- GPS Mission Goals
- Defined by the US Department of Defense (DoD), developed to replace the TRANSIT system and to deliver not only position, but also accurate time and speed.
- Initial goals
 - User receiver cost < 10.000 \$ and "5 bombs in the same hole"
 - Positioning anywhere, continuously & in all weather conditions
- Services
 - Standard positioning service (SPS) open to civil users, but single-frequency with L1 coarse/acquisition signal 1575.42 MHz, i.e. no ionosphere effect correction, selective availability
 - Precise positioning service (PPS), dual-frequency, using P(Y) signals in L1 and L2 (1227.60 MHz) bands, with military control access (key for pseudo-code)

• GPS – History

1973	Decision to develop satellite navigation system
1978-1985	11 Block-I satellites launched
1989	First Block-II satellite launched
Dec 1993	Initial Operational Capability (IOC)
Mar 1994	Last Block-II satellite
July 1995	Full Operational Capability (FOC)
May 2000	Deactivation of Selective Availability
Sep 2005	First IIR-M GPS satellite

GPS – Availability & Orbits

Geostationary orbit (ca. 36.000 km) communication, TV, and meterology

MEO: Medium Earth Orbit e.g., **GPS satellites** (ca. 20.200 km)

LEO: Low Earth Orbit e.g., **ISS** (ca. 700 km)

Animated Orbits

- GPS Satellites
- Block-I
 - Weight: 845 kg; Lifespan: 4.5 years;
 - Energy: Solar panels (400W); Nickel-Cadium batteries
 - Out-of-order since 1996
- Block-II/-IIA
 - Weight: 1500kg; Lifespan: 7.5 years; Wingspan: 5.1m
 - Four atomic clocks (2 rubidium, 2 cesium)
- Block-IIR
 - Weight: 2000kg; Costs: 75 million USD
 - Three atomic clocks (all rubidium clocks)
 - Second civil signal (L2C)
 - New military signal with new code
- Block-IIF
 - Third frequency for civil use (L5)

GPS – Components

Space segment

- 24 satellites circulating the Earth every 12 sidereal hours on six orbits
- Each satellite is equipped with onboard atomic clocks
- Orbits are equally spaced 60° apart from each other with an inclination angle of 55° to the equator
- Orbit altitude: approx. 20,180 km

Control segment

- Initially: Five ground stations for monitoring and controlling the satellites
- In 2005: Six additional monitoring stations
- Adjust or synchronize satellites

User Segment

- GPS receiver
- Applications: land, sea, and air navigation, as well as military purposes and location-based services

GPS – Circular Lateration

Known:

- Position $p_i = (x_i, y_i, z_i)$ for satellites $i \in \{1, 2, 3, 4\}$ at time t_i

- Inaccurate reception time tr_i
- Speed of light c
- Unknown:
 - Position p
- Calculation:
 - $r_i = (tr_i t_i)*c \text{ for } i = 1,2,3$
 - Estimate position p_{est} : intersection of spheres (centered on satellite i with radius r_{ij}
 - p_{est} contains the coordinates (x,y,z) and ist determined on basis of the signals 1,2, and 3
 - p_{est} is **not accurate** due to different clock times at the satellites and the receiver
 - Signal 4 is now used to determine the corrected reception time t

distributed systems group

- GPS Possible Errors
- Satellite clocks (although four highly accurate atomic clocks) can cause time error of 10ns
- Satellite position is only known up to approx. 1-5m
- Receiver has only limited accuracy
- Multipath propagation
- Satellite geometry (Dilution Of Precision, DOP)
- Signal (speed of light) slow down when crossing ionosphere and troposphere

ionosphere

- GPS Components
- Reference station (RS) located at a known and accurately surveyed point
- RS determines its GPS position using four or more satellites
- Deviation of the measured position to the actual position can be calculated
- Variations are valid for all the GPS receivers around the RS

Runtime corrections are transmitted by radio

GPS – Augmentation Systems

- GPS Galileo
 - European GNSS
 - Publicly available since December 2016
 - Independence of other systems
 - More services: Open, Commercial, Safety of Life, Public Regulated, Search and Rescue
 - Advantages
 - Precision: Combination of GPS and Galileo in dual receivers is about to lead to higher precision
 - Availability: Higher number of satellites to improve the availability.
 - Coverage: Galileo aims to provide a better coverage at high latitudes due to the location and inclination of the satellites.

GPS – Galileo Services

Open Service

basic signal provided free-of-charge

Safety-of-Life Service

 Enhanced signal including an integrity function that will warn the user within a few seconds in case of a malfunction. This service will be offered to the safety-critical transport community, aviation, etc.

Commercial Service

 combination of two encrypted signals for higher data throughput rate and higher accuracy authenticated data;

Public Regulated Service

 two encrypted signals with controlled access for specific users like governmental bodies; security against manipulation, availability garanties

Search And Rescue Service

 Galileo will contribute to the international COSPAS-SARSAT cooperative system for humanitarian search and rescue activities. Each satellite will be equipped with a transponder transferring the distress signal from the user to the Rescue Coordination Centre and informing him that his situation has been detected.

- GPS Galileo Operations
- Galileo programme structured in two phases
 - In-Orbit Validation (IOV) phase
 - Qualifying and validating the systems through in-orbit tests
 - Two experimental satellites: Dec 2005, Apr 2008
 - Four operational satellites: Q3/4 2011, Q1/2 2012
 - Full Operational Capability (FOC) phase
 - Deployment of remaining ground and space infrastructure
 - Intermediate initial operational capability: 18 satellites in operation
 - Full system: 30 satellites, control centers located in Europe and a network of sensor stations and uplink stations installed around the globe

GPS – Galileo Architecture

- 30 satellites in MEO: Each satellite will contain
 - a navigation payload
 - search and rescue transponder
- 30-40 sensor stations
- 3 control centers
- 9 Mission Uplink stations
- 5 TT&C stations.

http://ec.europa.eu/enterprise/policies/satnav/galileo/programme/index_en.htm

- GPS Other GNSS
 - Global Navigation Satellite System (GLONASS)
 - Program started in 1982
 - System currently operated by the Russian Defense Ministry
 - 24 planned satellites
 - 3 orbital levels
 - Orbital altitude of 19,100 km
 - Full operation since 1996
 - Compass Navigation Satellite System (CNSS)
 - China's second-generation satellite navigation system (also known as BeiDou 2)
 - Long-term goal: Development of as system similar to the GPS and GLONASS
 - 25~35 satellites: 4 GEO satellites and MEO satellites
 - Two levels of positioning service: Open and restricted (military)
 - Coverage: Initially only neighboring countries, later on extension to global navigation satellite system.
 - Launches: 1 MEO (Apr 07) and 3 GEO (Apr 09 June 10)

GPS – Summary

Praktikum Mobile und Verteilte Systeme

Location Management in Android

Prof. Dr. Claudia Linnhoff-Popien Steffen Illium, Stefan Langer, André Ebert http://www.mobile.ifi.lmu.de SoSe 2019

Positioning Challenges on mobile Devices

- Sources: GPS, Cell-ID, and Wi-Fi
- Trade of in accuracy, speed, and battery-efficiency and trust.
- Re-estimating user location due to frequent and non-linear movement.
- Varying accuracy and non-consistent localization:
 - Older positions from one source might be more accurate than a newer location from another or same source.

Google Location Services

Android Location Manager

 locationManager = getSystemService(Context.LOCATION_SERVICE) as LocationManager

// Register the listener with the Location Manager locationManager.requestLocationUpdates(LocationManager.NETWORK_PRO VIDER, 0, 0f,locationListener)

Localization strategies on mobile

```
// Define a listener that responds to location updates
val locationListener = object : LocationListener {
  override fun onLocationChanged(location: Location) {
         makeUseOfNewLocation(location)
  override fun onStatusChanged(provider: String, status: Int, extras: Bundle) {
  override fun onProviderEnabled(provider: String) {
  override fun onProviderDisabled(provider: String) {
```

- Localization strategies on mobile
- 1. Start application
- 2. Start Listening for updates from desired location providers
- 3. Maintain a "current best estimate" of location by filtering outlow accuracy samples
- 4. Stop listening for location updates
- 5. Take advantage of the last best location estimate.

- Location Updates & User Interaction
- Context based location updates.
- Location update strategies may depend on User Interaction.
- Most of the time, users don't want to wait to get a high accuracy location (Apart from navigation task e.g.)

- Geofences: Trigger Events
- Geofences are geometric shapes
- Its vertices are geopositions as WGS84 coordinates
- Events that can be triggered :
 - Entering a Fence Region
 - Leaving a Fence Region
 - "Dwelling" in a Fenced Region
 - Stay of specified Length
 - Less triggering friendly

distributed systems group

Geofences: Android Librarys & Usage

Android Geofencing Client:

- geofencingClient = LocationServices.getGeofencingClient(this)
- geofenceList.add(Geofence.Builder()
- .setRequestId(entry.key)
- // Set the circular region of this geofence.
- .setCircularRegion(entry.value.latitude, entry.value.longitude,
- Constants.GEOFENCE_RADIUS_IN_METERS)
- // Set the expiration duration of the geofence .setExpirationDuration(Constants.GEOFENCE_EXPIRATION_IN_MILLISECONDS)
- // Set the transition types of interest. Alerts are only generated for these transition. .setTransitionTypes(Geofence.GEOFENCE_TRANSITION_ENTER or Geofence.GEOFENCE_TRANSITION_EXIT)
- // Create the geofence.
- .build())

Geofences: Android Librarys & Usage

```
geofencingClient?.addGeofences(getGeofencingRequest(),
geofencePendingIntent)?
```

https://developer.android.com/training/location/geofencing

Tips for Development and Debugging

Use the geo command in the emulator console to mock a Geo Location

Connect to the emulator console:

- telnet localhost <console-port>
- geo fix -121.45356 46.51119 4392
- \$GPRMC,081836,A,3751.65,S,14507.36,E,000.0,360.0,130998,011.3,E*62