Innovative Mobile Applications

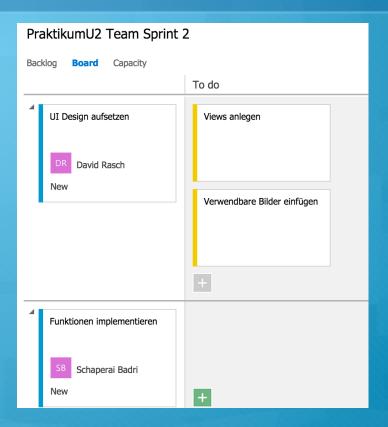
Übung 2

Agenda

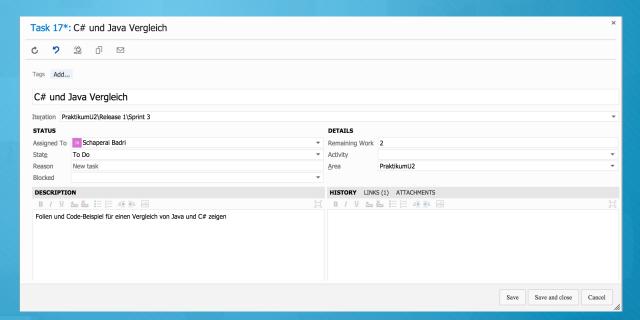
- Organisation mit Visual Studio Online
- Projekt Funktionalität und Code
- C# im Vergleich zu Java
- O Native Funktionalität mittels Xamarin

Setup:

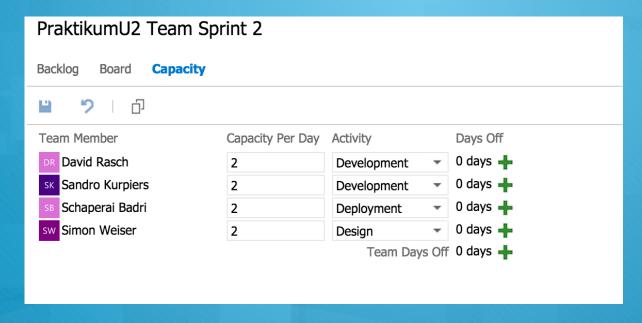
- Anmeldung mit Live-ID
- Account-URL erstellen
- Team-Mitglieder zufügen

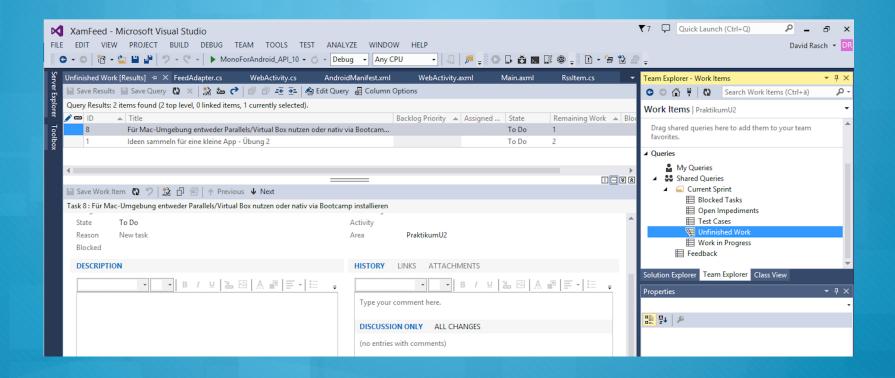

Backlog:

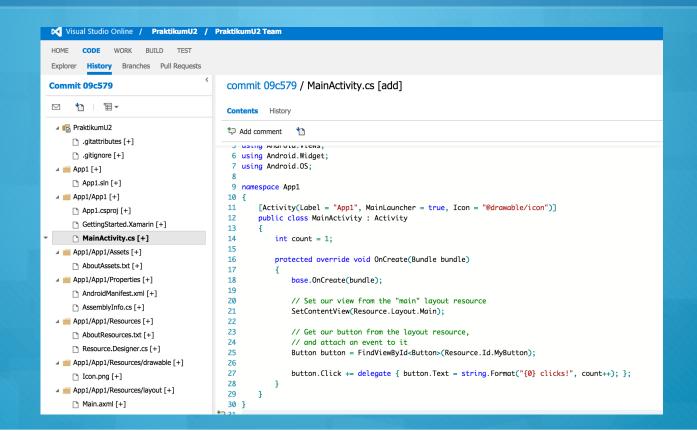
- Ort an dem eine Prioritätenliste der Anforderungen gehalten wird
- Repository aller Informationen


Order	Work Item Type	Title	State	Effort	Iteration Path
1	Product Backlo	UI Design aufsetzen	New	6	PraktikumU2\Release 1\Sprint 2
2	Product Backlo	Funktionen implementieren	New	6	PraktikumU2\Release 1\Sprint 2
3	Product Backlo	Tests	New	1	PraktikumU2\Release 1\Sprint 3
4	Product Backlo	Präsentationen anfertigen	New	1	PraktikumU2\Release 1\Sprint 3

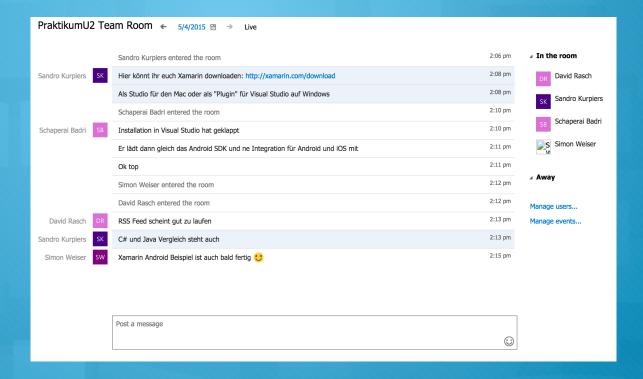
Scrum:


 Sprints mit gefilterten
 Anforderungen für die Dauer eines Arbeitsschrittes


To-Do auf Board anlegen:



Kapazitäten zuweisen:



Visual Studio Einbindung

Chat-Room:

Code-Demo

C# und Java im Vergleich

C#

Microsoft

.NET (CIL)

objektorientiert

Art:

Laufzeitumgebung

Entwickler:

Java

Sun Microsystems

objektorientiert

JRE (Bytecode)

C# und Java im Vergleich

C#

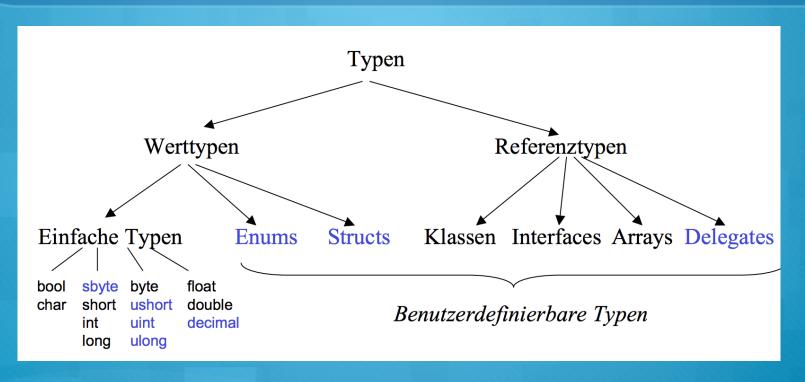
stark, statisch, klassenbasiert

ja ne

Versionierung ja

Typisierung:

Pointer


Java

stark, statisch, klassenbasiert

nein

nein

C# Typsysteme

Quelle: Hanspeter Mössenböck - Universität Potsdam

C# und Java Codebeispiel

Fibonacci Sequenz in Java:

```
// Fibonacci
class Fibonacci implements Iterable<Integer> {
   public Iterator<Integer> iterator() {
        return new Iterator<Integer>() {
            private int a = 0;
            private int b = 1;
            @Override
            public boolean hasNext() {
                return true;
            @Override
            public Integer next() {
                int tmp = a;
                a = b:
                b = a + tmp;
                return tmp;
            @Override
            public void remove() {
                throw new UnsupportedOperationException(
                        "Keine Fibonacci Sequenz");
       }:
```

C# und Java Codebeispiel

Fibonacci Sequenz in C#:

```
1 // Fibonacci
2 public static IEnumerable<int> Fibonacci() {
3    int a = 0;
4    int b = 1;
5
6    while (true) {
7       yield return a;
8       a += b;
9       yield return b;
10       b += a;
11    }
12    }
13 }
```

Zusammenfassung

Pro C#:

- Mächtiger (Structs, Referenzparameter)
- Bequemer (Indexer, foreach)
- Flexibler (erlaubt Systemprogrammierung)
- Besser unter Windows

Zusammenfassung

Pro Java:

- Kleiner und einfacher
- Größere Verbreitung
- Strikter (kein Unsafe Code)
- Portabler

IDE für C#

Xamarin

Native Programmierung für Android, iOS, Windows und Mac mit C#

Xamarin Studio

Standalone IDE für mobile App-Entwicklung (erhältlich für Windows und Mac)

Mächtige IDE für zahlreiche Hochsprachen (nur Windows)

Enthält Xamarin.Android, Xamarin.iOS und Xamarin.Mac (nicht Windows Phone) In Kombination mit Xamarin for VS möglich Apps für Android, iOS und Windows Phone in C# zu schreiben

Xamarin

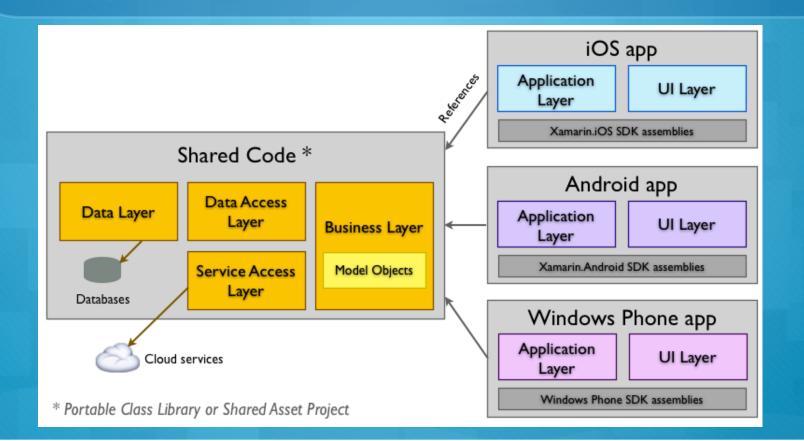
Native iOS App

Platform-specific C#

Native Android app

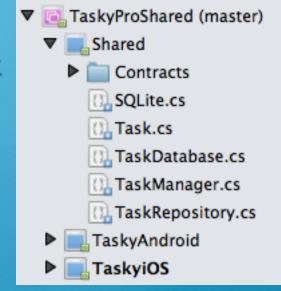
Platform-specific C#

Native Windows app


Platform-specific C#

Shared C# App Logic

Xamarin.Forms


- Applikation (inkl. GUI) muss nur 1x entwickelt werden
- Xamarin.Forms.Button
 - → UIButton (iOS)
 - → AndroidButton (Android)
 - → WindowsPhoneButton (Windows)
- Unterschiede der Plattformen per Default eingebaut

Shared Code

Shared Project

- Shared Shared Project enthält Code den alle Projekte gemeinsam haben
- TaskyAndroid Xamarin.Android application project

Compiler Directives

 Sollten Unterscheidungen für eine spezielle Plattform

notwendig sein, wird häufig eine Kompiler-Direktive verwendet

```
using System;
using System.Collections.Generic;
using System.Text;

#if __IOS__
using MonoTouch.Accounts;
#elif __ANDROID__
using Android.Accounts;
#endif
*namespace MyApps.Shared
{
    public class MyFirstClass
{
}
```

Danke für die Aufmerksamkeit

Praktikum Innovative Mobile Applications, Übung 2 Schaperai Badri, Sandro Kurpiers, David Rasch, Simon Weiser