
Prof. Dr. Claudia Linnhoff-Popien
Thomy Phan, Andreas Sedlmeier, Fabian Ritz
http://www.mobile.ifi.lmu.de

SoSe 2019

Praktikum Autonome Systeme

Automated Planning

http://www.mobile.ifi.lmu.de/

 Recap: Decision Making

Artificial Intelligence

Act

Learn Think

Machine
Learning

Planning

Pattern Recognition Scheduling

Decision Making

Multi-Agent Systems

Reinforcement
Learning

Social Interactivity

Artificial Intelligence

Act

Learn Think

Machine
Learning

Planning

Pattern Recognition Scheduling

Decision Making

Multi-Agent Systems

Reinforcement
Learning

Social Interactivity

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Automated Planning

Decision Making

• Goal: Autonomously select actions to solve a (complex) task

– time could be important (but not necessarily)

– maximize the expected reward for each state

5

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Automated Planning

Multi-Armed Bandits

6

• Multi-Armed Bandit: situation, where you have to learn to make a good
(long-term) choice

• Explore choices to gather information (= Exploration)

– Example: random choice

• Prefer promising choices (= Exploitation)

– Example: greedy choice (e.g., using argmax)

• A good Multi-Armed Bandit solution should always balance between
Exploration and Exploitation

?

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Automated Planning

Multi-Armed Bandits Example

7

• 𝜖-greedy (𝜖 > 0):
𝜖, select randomly

1 − 𝜖, select choice highest average reward

– Many approaches use 𝜖-greedy with annealing 𝜖

• UCB1 (Upper Confidence Bound):
– Select by maximizing:

𝑹𝒊 + 𝒄
𝟐𝒍𝒐𝒈𝑵

𝑵𝒊

With probability

 Sequential Decision Making

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Automated Planning

Decision Making

• Goal: Autonomously select actions to solve a (complex) task

– time could be important (but not necessarily)

– maximize the expected reward for each state

9

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Automated Planning

Sequential Decision Making

• Goal: Autonomously select actions to solve a (complex) task

– time is important (actions might have long term
consequences)

– maximize the expected cumulative reward for each state

10

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Automated Planning

Sequential Decision Making Example

11

• Tetris
– Actions:

• Move Left, Right, Down

• Rotate clockwise

• Do Nothing

– Goals:

• Per time step: Whatever …

• Short-term: Fill the gaps

• Long-term: Don‘t let stack size exceed
board height

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Automated Planning

Markov Decision Processes

• A Markov Decision Process (MDP) is defined as M = 〈𝒮,𝒜,𝒫,ℛ〉:

– 𝒮 is a (finite) set of states

– 𝒜 is a (finite) set of actions

– 𝒫 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 ∈ [0, 1] is the probability for reaching 𝑠𝑡+1 ∈ 𝒮 when
executing 𝑎𝑡 ∈ 𝒜 in 𝑠𝑡 ∈ 𝒮

– ℛ 𝑠𝑡 , 𝑎𝑡 ∈ ℝ is a reward function

12

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Automated Planning

Markov Decision Processes

• MDPs formally describe environments for Sequential Decision Making

• All states 𝑠𝑡 ∈ 𝒮 are Markov such that

ℙ 𝑠𝑡+1 𝑠𝑡 = ℙ 𝑠𝑡+1 𝑠1, … , 𝑠𝑡 (no history of past states required)

• Assumes full observability of the state

• States and actions may be discrete or continuous

• Many problems can be formulated as MDPs!

– E.g., multi-armed bandits are MDPs with a single state

13

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Automated Planning

Tetris as MDP

14

• Define Tetris as MDP M = 〈𝒮,𝒜,𝒫,ℛ〉:
– States 𝓢: describe board size, stone position,

and current stack

– Actions 𝓐: move left/right/down, rotate,
nothing

– Transitions 𝓟: deterministic movement of
stone, random initialization of next stone

– Rewards 𝓡: depend on actual goal

• Short-term: penalize each gap in stack
with -1

• Long-term: if stack size exceeds board
height, penalize agent with -1

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Automated Planning

Policies

• A policy 𝜋: 𝒮 → 𝒜 represents the behavioural strategy of an agent

– Policies may also be stochastic 𝜋 𝑎𝑡 𝑠𝑡 ∈ [0,1]

15

• Tetris Examples:

– 𝜋0: maps each state st ∈ 𝒮 to a random
action at ∈ 𝒜

– 𝜋1 : maps each state st ∈ 𝒮 to action at =
𝑀𝑜𝑣𝑒𝐷𝑜𝑤𝑛 ∈ 𝒜

– 𝜋2 : maps each state st ∈ 𝒮 with even time steps
t to action at = 𝑀𝑜𝑣𝑒𝐷𝑜𝑤𝑛 ∈ 𝒜 and at=
𝑀𝑜𝑣𝑒𝐿𝑒𝑓𝑡 ∈ 𝒜 otherwise

• How do we know which policy is better?

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Automated Planning

Returns

• The return of a state 𝑠𝑡 ∈ 𝒮 for a horizon ℎ given a policy 𝜋 is the
cumulative (discounted) future reward (ℎ may be infinite!):

𝐺𝑡 =

𝑘=0

ℎ−1

𝛾𝑘 ℛ 𝑠𝑡+𝑘 , 𝜋 𝑠𝑡+𝑘 , 𝛾 ∈ [0,1]

16

• Tetris Example:

– Play a Tetris game given a policy 𝜋

– Record all rewards 𝑟𝑡 = ℛ(𝑠𝑡 , 𝑎𝑡) and their resp.
time steps 𝑡

– Compute return 𝐺𝑡 = σ𝑘=0
ℎ−1 𝛾𝑘 𝑟𝑡, 𝛾 ∈ [0,1]

• Discount factor 𝛾 is used to weight future reward

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Automated Planning

Value Functions

• The value of a state 𝑠𝑡 ∈ 𝒮 is the expected return of 𝑠𝑡 for a horizon ℎ ∈ ℕ
given a policy 𝜋:

𝑉𝜋 𝑠𝑡 = 𝔼[𝐺𝑡|𝑠𝑡]

• The action value of a state 𝑠𝑡 ∈ 𝒮 and action 𝑎𝑡 ∈ 𝒜 is the expected
return of executing 𝑎𝑡 in 𝑠𝑡 for a horizon ℎ ∈ ℕ given a policy 𝜋:

𝑄𝜋 𝑠𝑡, 𝑎𝑡 = 𝔼[𝐺𝑡|𝑠𝑡 , 𝑎𝑡]

17

• Tetris Example:

– 𝑉𝜋 and/or 𝑄𝜋 can be computed by averaging
over several returns 𝐺𝑡 observed by playing with
a (fixed) policy 𝜋

• Value functions (𝑽𝝅 and/or 𝑸𝝅) can be used to
evaluate policies 𝝅

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Automated Planning

Optimal Policies and Value Functions

• Goal: Find an optimal policy 𝜋∗ which maximizes the expected return
𝔼[𝐺𝑡|𝑠𝑡] for each state:

𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋𝑉
𝜋 𝑠𝑡 , ∀𝑠𝑡 ∈ 𝒮

• The optimal value function is defined by:

𝑉∗ 𝑠𝑡 = 𝑉𝜋
∗
𝑠𝑡 = 𝑚𝑎𝑥𝜋𝑉

𝜋 𝑠𝑡
𝑄∗ 𝑠𝑡, 𝑎𝑡 = 𝑄𝜋∗ 𝑠𝑡 , 𝑎𝑡 = 𝑚𝑎𝑥𝜋𝑄

𝜋 𝑠𝑡, 𝑎𝑡

• When 𝑉∗ or 𝑄∗ is known, 𝜋∗can be derived.

18

 Automated Planning

Artificial Intelligence

Act

Learn Think

Machine
Learning

Planning

Pattern Recognition Scheduling

Decision Making

Multi-Agent Systems

Reinforcement
Learning

Social Interactivity

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Automated Planning

Automated Planning

• Goal: Find (near-)optimal policies 𝜋∗ to solve complex problems

• Use (heuristic) lookahead search on a given model 𝑀 ≈ 𝑀 of the problem

21

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Automated Planning

Planning Approaches (Examples)

22

Tree Search Evolutionary Computation Dynamic Programming

 Dynamic Programming

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Automated Planning

Dynamic Programming

• Dynamic refers to sequential / temporal component of a problem

• Programming refers to optimization of a program

• We want to solve Markov Decision Processes (MDPs):
– MDPs are sequential decision making problems

– To find a solution, we need to optimize a program (policy 𝜋)

24

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Automated Planning

Policy Iteration

• Dynamic Programming approach to find an optimal policy 𝜋∗

• Starts with a (random) guess 𝜋0
• Consists of two alternating steps given 𝜋𝑛:

• Terminates when 𝜋𝑖+1 = 𝜋𝑖 or when a time budget runs out

• Policy Iteration forms the basis for most Planning and Reinforcement
Learning algorithms!

25

Policy Evaluation Policy Improvement

compute 𝑉𝜋𝑛 and/or 𝑄𝜋𝑛 maximize 𝑉𝜋𝑛/𝑄𝜋𝑛

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Automated Planning

Value Iteration

• Dynamic Programming approach to find the optimal value function 𝑉∗

• Starts with a (random) guess 𝑉0

• Iteratively updates the value estimate 𝑉𝑛(𝑠𝑡) for each state 𝑠𝑡 ∈ 𝒮

𝑉𝑛+1 𝑠𝑡 = max
𝑎𝑡∈𝒜

{ℛ 𝑠𝑡 , 𝑎𝑡 + 𝛾

𝑠𝑡+1∈𝒮

𝒫 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝑉
𝑛(𝑠𝑡+1)}

• Terminates when 𝑉𝑛+1 = 𝑉𝑛 or when a time budget runs out

• The optimal action-value function 𝑄∗ is computed analogously

• 𝑉∗ and/or 𝑄∗ can be used to derive an optimal policy 𝜋∗

• Do you see the link to Policy Iteration?

26

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Automated Planning

Advantages and Disadvantages of DP

• General approach (does not require explicit domain knowledge)

• Converges to optimal solution

• Does not require exploration-exploitation (all states are visited anyway)

• Computational costs

• Memory costs

• Availability of an explicit model M = 〈𝒮,𝒜,𝒫,ℛ〉

27

?

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Automated Planning

Intermediate Summary

• What we know so far:
– Multi-armed bandits

– Markov Decision Processes (MDPs)

– Policies and Value Functions

– Optimally solve MDPs with Dynamic Programming

• What we don‘t know (yet):
– How to find solutions in a more scalable way?

– How to find solutions without a model?

– How to react to unexpected events?

28

Monte Carlo Planning

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Automated Planning

Global Planning and Local Planning

• Global Planning
– considers the entire state space 𝒮 to approximate 𝜋∗

– produces for each state 𝑠𝑡 ∈ 𝒮 a mapping to actions 𝑎𝑡 ∈ 𝒜

– typically performed offline (before deploying the agent)

– Examples: Policy and Value Iteration

• Local Planning
– only considers the current state 𝑠𝑡∈ 𝒮 (and possible future states) to

approximate 𝜋∗(𝑠𝑡)

– recommends an action 𝑎𝑡 ∈ 𝒜 for current state 𝑠𝑡∈ 𝒮

– can be performed online (interleaving planning and execution)

– Examples: Monte Carlo Tree Search

30

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Automated Planning

Monte Carlo Planning

• Dynamic Programming always assumes full knowledge of the underlying
MDP M = 〈𝒮,𝒜,𝒫, ℛ〉

– Most real-world applications have extremely large state spaces

– Especially 𝒫 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 is hard to pre-specify in practice!

• Monte Carlo Planning only requires a generative model as blackbox
simulator 𝑀 ≈ M

– Given some state 𝑠𝑡 ∈ 𝒮 and action 𝑎𝑡∈ 𝒜, the generative model
provides a sample 𝑠𝑡+1 ∈ 𝒮 and 𝑟𝑡 = ℛ(𝑠𝑡, 𝑎𝑡)

– Can be used to approximate 𝑉∗ or 𝑄∗ via statistical sampling

– Requires minimal domain knowledge (𝑀 can be easily replaced)

31

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Automated Planning

Explicit Model vs. Generative Model

• Generative model can be easier implemented than explicit probability
distributions!

32

?

Real Environment Environment Model

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Automated Planning

Explicit Model vs. Generative Model

• Generative model can be easier implemented than explicit probability
distributions!

• Example: Throwing two dices

– Explicit Model:

– Generative Model:

• Generate two random numbers ranging from 1 to 6

33

Total 2 3 4 5 6 7 8 9 10 11 12

Prob. 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Automated Planning

Monte Carlo Rollouts

• Goal: Given a state 𝑠𝑡 ∈ 𝒮 and a policy 𝜋𝑟𝑜𝑙𝑙𝑜𝑢𝑡 , we want to find the
action 𝑎𝑡 ∈ 𝒮 which maximizes 𝑄𝜋𝑟𝑜𝑙𝑙𝑜𝑢𝑡 𝑠𝑡, 𝑎𝑡 = 𝔼[𝐺𝑡|𝑠𝑡 , 𝑎𝑡]

• Approach: Given a computation budget of 𝐾 simulations and a horizon ℎ

– Sample 𝐾 action sequences (= plans) of length ℎ from 𝜋𝑟𝑜𝑙𝑙𝑜𝑢𝑡

– Simulate all plans with generative model M and compute the return
𝐺𝑡 for each plan

– Update estimate of 𝑄𝜋𝑟𝑜𝑙𝑙𝑜𝑢𝑡 𝑠𝑡, 𝑎𝑡 = 𝔼[𝐺𝑡|𝑠𝑡 , 𝑎𝑡]

– Finally: Select action 𝑎𝑡 ∈ 𝒮 with highest 𝑄𝜋𝑟𝑜𝑙𝑙𝑜𝑢𝑡 𝑠𝑡, 𝑎𝑡

34

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Automated Planning

Monte Carlo Rollouts Demonstration

35

Agent

Goal
Gives reward of +1

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Automated Planning

Automated Planning: Recap

36

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Automated Planning

Monte Carlo Rollouts and Policy Iteration

• Goal: Given a state 𝑠𝑡 ∈ 𝒮 and a policy 𝜋𝑟𝑜𝑙𝑙𝑜𝑢𝑡 , we want to find the action
𝑎𝑡 ∈ 𝒜 which maximizes 𝑄𝜋𝑟𝑜𝑙𝑙𝑜𝑢𝑡 𝑠𝑡, 𝑎𝑡 = 𝔼[𝐺𝑡|𝑠𝑡 , 𝑎𝑡]

• Approach: Given a computation budget of 𝐾 simulations and a horizon ℎ

– Sample 𝐾 action sequences (= plans) of length ℎ from 𝜋𝑟𝑜𝑙𝑙𝑜𝑢𝑡

– Simulate all plans with generative model M and compute the return 𝐺𝑡
for each plan

– Update estimate of 𝑄𝜋𝑟𝑜𝑙𝑙𝑜𝑢𝑡 𝑠𝑡, 𝑎𝑡 = 𝔼[𝐺𝑡|𝑠𝑡 , 𝑎𝑡] Evaluation

– Finally: Select action 𝑎𝑡 ∈ 𝒮 with highest 𝑄𝜋𝑟𝑜𝑙𝑙𝑜𝑢𝑡 𝑠𝑡, 𝑎𝑡 Improvement

• Monte Carlo Rollouts lead to a better policy than 𝝅𝒓𝒐𝒍𝒍𝒐𝒖𝒕

37

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Automated Planning

Monte Carlo Tree Search (MCTS)

• Goal: Given a state 𝑠𝑡 ∈ 𝒮 and a policy 𝜋𝑟𝑜𝑙𝑙𝑜𝑢𝑡 , we want to find the
action 𝑎𝑡 ∈ 𝒜 which maximizes 𝑄∗ 𝑠𝑡, 𝑎𝑡 = 𝔼[𝐺𝑡|𝑠𝑡 , 𝑎𝑡]

• Approach: Incrementally construct and traverse a search tree given a
computation budget of 𝐾 simulations and a horizon ℎ

– nodes represent states 𝑠𝑡 ∈ 𝒮 (and actions 𝑎𝑡 ∈ 𝒜)

– search tree is used to „learn“ 𝑄 ≈ 𝑄∗ via blackbox simulation

38

State 𝑠𝑡

〈 𝑄 𝑠𝑡 , 𝑎1 , 𝑁𝑎1〉 〈 𝑄 𝑠𝑡 , 𝑎3 , 𝑁𝑎3〉

〈 𝑄 𝑠𝑡 , 𝑎2 , 𝑁𝑎2〉

𝑎1
𝑎2

𝑎3

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Automated Planning

MCTS Phases

• MCTS consists of four phases:

1. Selection

2. Expansion

3. Evaluation

4. Backup

39

State 𝑠𝑡

〈 𝑄 𝑠𝑡 , 𝑎1 , 𝑁𝑎1〉 〈 𝑄 𝑠𝑡 , 𝑎3 , 𝑁𝑎3〉

〈 𝑄 𝑠𝑡 , 𝑎2 , 𝑁𝑎2〉

𝑎1
𝑎2

𝑎3

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Automated Planning

MCTS Phases - Selection

• MCTS phases:

1. Selection:
 given state 𝑠𝑡 ∈ 𝒮, select 𝑎𝑡 ∈ 𝒜 (until node is a leaf)

 How can we do this? exploration/exploitation

2. Expansion

3. Evaluation

4. Backup

40

State 𝑠𝑡

〈 𝑄 𝑠𝑡 , 𝑎1 , 𝑁𝑎1〉 〈 𝑄 𝑠𝑡 , 𝑎3 , 𝑁𝑎3〉

〈 𝑄 𝑠𝑡 , 𝑎2 , 𝑁𝑎2〉

𝑎1
𝑎2

𝑎3

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Automated Planning

MCTS Phases - Selection

• MCTS phases:

1. Selection:
 given state 𝑠𝑡 ∈ 𝒮, select 𝑎𝑡 ∈ 𝒜 (until node is a leaf)

 how can we do this? multi-armed bandits (e.g., UCB1)

2. Expansion

3. Evaluation

4. Backup

41

State 𝑠𝑡

〈 𝑄 𝑠𝑡 , 𝑎1 , 𝑁𝑎1〉 〈 𝑄 𝑠𝑡 , 𝑎3 , 𝑁𝑎3〉

〈 𝑄 𝑠𝑡 , 𝑎2 , 𝑁𝑎2〉

𝝅𝒕𝒓𝒆𝒆 𝒔𝒕 = 𝒂𝒓𝒈𝒎𝒂𝒙𝒂𝒕∈𝒜{
𝑸 𝒔𝒕, 𝒂𝒕 + 𝒄

𝟐𝒍𝒐𝒈𝑵

𝑵𝒂𝒕

}

𝑎1
𝑎2

𝑎3

𝑁 =

𝑎𝑡∈𝒜

𝑁𝑎𝑡

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Automated Planning

MCTS Phases - Expansion

• MCTS phases:

1. Selection

2. Expansion
3. Evaluation

4. Backup

42

State 𝑠𝑡
〈 𝑄 𝑠𝑡 , 𝑎1 , 𝑵𝒂𝟏 + 𝟏〉

〈 𝑄 𝑠𝑡 , 𝑎3 , 𝑁𝑎3〉

〈 𝑄 𝑠𝑡 , 𝑎2 , 𝑁𝑎2〉
State 𝑠𝑡+1

〈𝟎, 𝟎〉

〈𝟎, 𝟎〉

〈𝟎, 𝟎〉

𝒂𝟏

𝑎3
𝑎2

𝒂𝟏
𝒂𝟐 𝒂𝟑

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Automated Planning

MCTS Phases - Evaluation

• MCTS phases:

1. Selection

2. Expansion

3. Evaluation: Estimate 𝑉 𝑠𝑡+1

4. Backup

43

State 𝑠𝑡
〈 𝑄 𝑠𝑡 , 𝑎1 , 𝑁𝑎1 + 1〉

〈 𝑄 𝑠𝑡 , 𝑎3 , 𝑁𝑎3〉

〈 𝑄 𝑠𝑡 , 𝑎2 , 𝑁𝑎2〉
State 𝑠𝑡+1

〈𝟎, 𝟎〉

〈𝟎, 𝟎〉

〈𝟎, 𝟎〉

𝒔𝒕+𝟏 can be evaluated
with e.g., rollouts or
an approximation of
𝑄 𝑠𝑡 , 𝑎1

𝒂𝟏

𝑎3
𝑎2

𝑎1
𝑎2 𝑎3

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Automated Planning

MCTS Phases - Backup

• MCTS phases:

1. Selection

2. Expansion

3. Evaluation

4. Backup

44

State 𝑠𝑡
〈𝑸 𝒔𝒕, 𝒂𝟏 , 𝑁𝑎1 + 1〉

〈 𝑄 𝑠𝑡 , 𝑎3 , 𝑁𝑎3〉

〈 𝑄 𝑠𝑡 , 𝑎2 , 𝑁𝑎2〉
State 𝑠𝑡+1

〈𝟎, 𝟎〉

〈𝟎, 𝟎〉

〈𝟎, 𝟎〉

𝑸 𝒔𝒕, 𝒂𝟏 ← 𝑸 𝒔𝒕, 𝒂𝟏 +
𝓡 𝒔𝒕,𝒂𝟏 +𝜸 𝑽 𝒔𝒕+𝟏 −𝑸 𝒔𝒕,𝒂𝟏

𝑵𝒂𝟏
+𝟏

Update predecessor
values with 𝑽 𝒔𝒕+𝟏

𝒂𝟏

𝑎3
𝑎2

𝑎1
𝑎2 𝑎3

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Automated Planning

MCTS and Policy Iteration

• MCTS phases:

1. Selection Policy Improvement (e.g., maximize UCB1)

2. Expansion

3. Evaluation

4. Backup

• Given infinite simulations 𝐾, MCTS converges to the optimal best first
tree for state 𝑠𝑡 ∈ 𝒮, which corresponds to the optimal policy 𝜋∗(𝑠𝑡)

45

Policy Evaluation (estimate 𝑄∗ 𝑠𝑡 , 𝑎𝑡)

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Automated Planning

Summary

• Dynamic Programming vs. Monte Carlo Planning

46

Algorithm Evaluation Improvement Model
Type

Optimality?

Policy
Iteration

𝑉𝜋 and/or 𝑄𝜋

of current 𝜋
Maximize 𝑉𝜋

and/or 𝑄𝜋
Explicit Yes

Value
Iteration

𝑉𝑛 via Bellman
Update

Maximize current
𝑉𝑛

Explicit Yes

MC Rollouts 𝑄𝜋𝑟𝑜𝑙𝑙𝑜𝑢𝑡 of
𝜋𝑟𝑜𝑙𝑙𝑜𝑢𝑡

Maximize 𝑄𝜋𝑟𝑜𝑙𝑙𝑜𝑢𝑡

(at the end only)
Generative No (depends

on 𝜋𝑟𝑜𝑙𝑙𝑜𝑢𝑡)

MCTS 𝑄𝜋𝑡𝑟𝑒𝑒 of
current 𝜋𝑡𝑟𝑒𝑒

Maximize 𝑄𝜋𝑡𝑟𝑒𝑒 Generative Yes (with
inifinite time)

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Automated Planning

Summary

• What we know so far:
– Multi-armed bandits

– Markov Decision Processes (MDPs)

– Policies and Value Functions

– Optimally solve MDPs with Dynamic Programming

– Approximately solve MDPs with Monte Carlo Search

• What we don‘t know (yet):
– How to find solutions without a model?

47

Thank you!

