

Praktikum Autonome Systeme

Automated Planning

Prof. Dr. Claudia Linnhoff-Popien Thomy Phan, Andreas Sedlmeier, Fabian Ritz <u>http://www.mobile.ifi.lmu.de</u>

SoSe 2019

→ Recap: Decision Making

Decision Making

- **Goal:** Autonomously select actions to solve a (complex) task
 - time could be important (but not necessarily)
 - maximize the **expected reward** for each state

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme SoSe 2019, Automated Planning

Multi-Armed Bandits

- Multi-Armed Bandit: situation, where you have to <u>learn</u> to make a good (long-term) <u>choice</u>
- **Explore** choices to gather information (= Exploration)
 - Example: random choice
- **Prefer** promising choices (= Exploitation)
 - Example: greedy choice (e.g., using argmax)

 A good Multi-Armed Bandit solution should always balance between Exploration and Exploitation

Multi-Armed Bandits Example

- ϵ -greedy ($\epsilon > 0$): With probability $\left\{ \begin{array}{c} \epsilon, \text{ select randomly} \\ 1 - \epsilon, \text{ select choice highest average reward} \end{array} \right.$
 - Many approaches use ϵ -greedy with annealing ϵ

- UCB1 (Upper Confidence Bound):
 - Select by maximizing:

$$\overline{R_i} + c_{\sqrt{\frac{2\log N}{N_i}}}$$

SoSe 2019, Automated Planning

→ Sequential Decision Making

Decision Making

- **Goal:** Autonomously select actions to solve a (complex) task
 - time could be important (but not necessarily)
 - maximize the **expected reward** for each state

Sequential Decision Making

- **Goal:** Autonomously select actions to solve a (complex) task
 - time is important (actions might have **long term** consequences)
 - maximize the **expected cumulative reward** for each state

Sequential Decision Making Example

- Tetris
 - Actions:
 - Move Left, Right, Down
 - Rotate clockwise
 - Do Nothing
 - Goals:
 - Per time step: Whatever ...
 - Short-term: Fill the gaps
 - Long-term: Don't let stack size exceed board height

Markov Decision Processes

- A Markov Decision Process (MDP) is defined as $M = \langle S, A, P, R \rangle$:
 - S is a (finite) set of states
 - \mathcal{A} is a (finite) set of actions
 - $\mathcal{P}(s_{t+1}|s_t, a_t) \in [0, 1]$ is the probability for reaching $s_{t+1} \in S$ when executing $a_t \in \mathcal{A}$ in $s_t \in S$
 - $\mathcal{R}(s_t, a_t) \in \mathbb{R}$ is a reward function

Markov Decision Processes

- MDPs formally describe environments for Sequential Decision Making
- All states $s_t \in S$ are **Markov** such that $\mathbb{P}(s_{t+1}|s_t) = \mathbb{P}(s_{t+1}|s_1, ..., s_t)$ (no history of past states required)
- Assumes full observability of the state
- States and actions may be **discrete** or **continuous**
- Many problems can be formulated as MDPs!
 - E.g., multi-armed bandits are MDPs with a single state

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Automated Planning

Tetris as MDP

- Define Tetris as MDP $M = \langle S, A, P, R \rangle$:
 - States S: describe board size, stone position, and current stack
 - Actions A: move left/right/down, rotate, nothing
 - Transitions \mathcal{P} : deterministic movement of stone, random initialization of next stone
 - Rewards \mathcal{R} : depend on actual goal
 - Short-term: penalize each gap in stack with -1
 - Long-term: if stack size exceeds board height, penalize agent with -1

Policies

- A **policy** $\pi: S \to \mathcal{A}$ represents the behavioural strategy of an agent
 - Policies may also be stochastic $\pi(a_t|s_t) \in [0,1]$
- Tetris Examples:
 - π_0 : maps each state $s_t \in S$ to a random action $a_t \in \mathcal{A}$
 - $\pi_1 : \text{maps each state } s_t \in \mathcal{S} \text{ to action } a_t = MoveDown \in \mathcal{A}$
 - π_2 : maps each state $s_t \in S$ with even time steps t to action $a_t = MoveDown \in A$ and $a_t = MoveLeft \in A$ otherwise
- How do we know which policy is better?

Returns

• The **return** of a state $s_t \in S$ for a horizon h given a policy π is the cumulative (discounted) future reward (h may be infinite!):

$$G_t = \sum_{k=0}^{h-1} \gamma^k \mathcal{R}\left(s_{t+k}, \pi(s_{t+k})\right), \gamma \in [0,1]$$

- Tetris Example:
 - Play a Tetris game given a policy π
 - Record all rewards $r_t = \mathcal{R}(s_t, a_t)$ and their resp. time steps t
 - Compute return $G_t = \sum_{k=0}^{h-1} \gamma^k r_t, \gamma \in [0,1]$
- Discount factor γ is used to weight future reward

Value Functions

The **value** of a state $s_t \in S$ is the expected return of s_t for a horizon $h \in \mathbb{N}$ given a policy π :

$$\mathcal{V}^{\pi}(s_t) = \mathbb{E}[G_t|s_t]$$

The **action value** of a state $s_t \in S$ and action $a_t \in \mathcal{A}$ is the expected return of executing a_t in s_t for a horizon $h \in \mathbb{N}$ given a policy π :

$$Q^{\pi}(s_t, a_t) = \mathbb{E}[G_t|s_t, a_t]$$

- Tetris Example:
 - $-V^{\pi}$ and/or Q^{π} can be computed by **averaging** over several returns G_t observed by playing with a (fixed) policy π
- Value functions (V^{π} and/or Q^{π}) can be used to evaluate policies π

Optimal Policies and Value Functions

• **Goal:** Find an *optimal policy* π^* which maximizes the expected return $\mathbb{E}[G_t|s_t]$ for each state:

$$\pi^* = \operatorname{argmax}_{\pi} V^{\pi}(s_t), \forall s_t \in \mathcal{S}$$

• The *optimal value function* is defined by:

$$V^*(s_t) = V^{\pi^*}(s_t) = max_{\pi}V^{\pi}(s_t)$$
$$Q^*(s_t, a_t) = Q^{\pi^*}(s_t, a_t) = max_{\pi}Q^{\pi}(s_t, a_t)$$

• When V^* or Q^* is known, π^* can be derived.

→ Automated Planning

Automated Planning

- **Goal:** Find (near-)**optimal policies** π^* to solve complex problems
- Use (heuristic) lookahead search on a given model $\widehat{M} \approx M$ of the problem

Planning Approaches (Examples)

Tree Search

Evolutionary Computation

Dynamic Programming

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Automated Planning

→ Dynamic Programming

Dynamic Programming

- **Dynamic** refers to sequential / temporal component of a problem
- **Programming** refers to optimization of a program

- We want to solve Markov Decision Processes (MDPs):
 - MDPs are **sequential** decision making problems
 - To find a solution, we need to optimize a **program** (policy π)

Policy Iteration

- Dynamic Programming approach to find an optimal policy π^*
- Starts with a (random) guess π_0
- Consists of two alternating steps given π_n :

- Terminates when $\pi_{i+1} = \pi_i$ or when a time budget runs out
- Policy Iteration forms the basis for most Planning and Reinforcement Learning algorithms!

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme SoSe 2019, Automated Planning

Value Iteration

- Dynamic Programming approach to find the optimal value function V^*
- Starts with a (random) guess V^0
- Iteratively updates the value estimate $V^n(s_t)$ for each state $s_t \in S$

$$V^{n+1}(s_t) = \max_{a_t \in \mathcal{A}} \{ \mathcal{R}(s_t, a_t) + \gamma \sum_{s_{t+1} \in \mathcal{S}} \mathcal{P}(s_{t+1} | s_t, a_t) V^n(s_{t+1}) \}$$

- Terminates when $V^{n+1} = V^n$ or when a time budget runs out
- The optimal action-value function Q^* is computed analogously
- V^* and/or Q^* can be used to derive an optimal policy π^*
- Do you see the link to Policy Iteration?

Advantages and Disadvantages of DP

- General approach (does not require explicit domain knowledge)
- Converges to optimal solution
- Does not require exploration-exploitation (all states are visited anyway)
- Computational costs
- Memory costs
- Availability of an explicit model $M = \langle S, A, P, R \rangle$

Intermediate Summary

- What we know so far:
 - Multi-armed bandits
 - Markov Decision Processes (MDPs)
 - Policies and Value Functions
 - Optimally solve MDPs with Dynamic Programming

- What we don't know (yet):
 - How to find solutions in a more scalable way?
 - How to find solutions without a model?
 - How to react to unexpected events?

→ Monte Carlo Planning

Global Planning and Local Planning

- Global Planning
 - considers the entire state space S to approximate π^*
 - produces for each state $s_t \in S$ a mapping to actions $a_t \in A$
 - typically performed offline (before deploying the agent)
 - Examples: Policy and Value Iteration
- Local Planning
 - only considers the **current state** $s_t \in S$ (and possible future states) to approximate $\pi^*(s_t)$
 - recommends an action $a_t \in \mathcal{A}$ for current state $s_t \in \mathcal{S}$
 - can be performed **online** (interleaving planning and execution)
 - Examples: Monte Carlo Tree Search

Monte Carlo Planning

- Dynamic Programming always assumes **full knowledge** of the underlying MDP $M = \langle S, A, P, R \rangle$
 - Most real-world applications have extremely large state spaces
 - Especially $\mathcal{P}(s_{t+1}|s_t, a_t)$ is hard to pre-specify in practice!

- Monte Carlo Planning only requires a generative model as **blackbox** simulator $\widehat{M} \approx M$
 - Given some state $s_t \in S$ and action $a_t \in A$, the generative model provides a sample $s_{t+1} \in S$ and $r_t = \mathcal{R}(s_t, a_t)$
 - Can be used to approximate V^* or Q^* via statistical sampling
 - Requires minimal domain knowledge (\widehat{M} can be easily replaced)

Explicit Model vs. Generative Model

Generative model can be easier implemented than explicit probability distributions!

Explicit Model vs. Generative Model

- Generative model can be easier implemented than explicit probability distributions!
- Example: Throwing two dices

– Explicit Model:

Total	2	3	4	5	6	7	8	9	10	11	12
Prob.	1/36	2/36	3/36	4/36	5/36	6/36	5/36	4/36	3/36	2/36	1/36

- Generative Model:
 - Generate two random numbers ranging from 1 to 6

Monte Carlo Rollouts

- **Goal:** Given a state $s_t \in S$ and a policy $\pi_{rollout}$, we want to find the action $a_t \in S$ which maximizes $Q^{\pi_{rollout}}(s_t, a_t) = \mathbb{E}[G_t|s_t, a_t]$
- **Approach**: Given a computation budget of *K* simulations and a horizon *h*
 - Sample K action sequences (= plans) of length h from $\pi_{rollout}$
 - Simulate all plans with generative model \widehat{M} and compute the return G_t for each plan
 - Update estimate of $Q^{\pi_{rollout}}(s_t, a_t) = \mathbb{E}[G_t|s_t, a_t]$
 - **Finally:** Select action $a_t \in S$ with highest $Q^{\pi_{rollout}}(s_t, a_t)$

Monte Carlo Rollouts Demonstration

Automated Planning: Recap

SoSe 2019, Automated Planning

Monte Carlo Rollouts and Policy Iteration

- **Goal:** Given a state $s_t \in S$ and a policy $\pi_{rollout}$, we want to find the action $a_t \in \mathcal{A}$ which maximizes $Q^{\pi_{rollout}}(s_t, a_t) = \mathbb{E}[G_t|s_t, a_t]$
- **Approach**: Given a computation budget of *K* simulations and a horizon *h*
 - Sample K action sequences (= plans) of length h from $\pi_{rollout}$
 - Simulate all plans with generative model \widehat{M} and compute the return G_t for each plan
 - Update estimate of $Q^{\pi_{rollout}}(s_t, a_t) = \mathbb{E}[G_t|s_t, a_t]$ Evaluation
 - **Finally:** Select action $a_t \in S$ with highest $Q^{\pi_{rollout}}(s_t, a_t) \Rightarrow$ Improvement

• Monte Carlo Rollouts lead to a better policy than $\pi_{rollout}$

Monte Carlo Tree Search (MCTS)

- **Goal:** Given a state $s_t \in S$ and a policy $\pi_{rollout}$, we want to find the action $a_t \in A$ which maximizes $Q^*(s_t, a_t) = \mathbb{E}[G_t|s_t, a_t]$
- **Approach**: Incrementally construct and traverse a search tree given a computation budget of *K* simulations and a horizon *h*
 - nodes represent states $s_t \in S$ (and actions $a_t \in A$)
 - search tree is used to "learn" $\hat{Q} \approx Q^*$ via blackbox simulation

MCTS Phases

- MCTS consists of four phases:
 - 1. Selection
 - 2. Expansion
 - 3. Evaluation
 - 4. Backup

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

SoSe 2019, Automated Planning

MCTS Phases - Selection

- MCTS phases:
 - 1. Selection:
 - given state $s_t \in S$, select $a_t \in A$ (until node is a leaf)
 - How can we do this? exploration/exploitation
 - 2. Expansion
 - 3. Evaluation
 - 4. Backup

MCTS Phases - Selection

- MCTS phases:
 - 1. Selection:
 - given state $s_t \in S$, select $a_t \in A$ (until node is a leaf)
 - how can we do this? multi-armed bandits (e.g., UCB1)
 - 2. Expansion
 - 3. Evaluation
 - 4. Backup

MCTS Phases - Expansion

- MCTS phases:
 - 1. Selection

2. Expansion

MCTS Phases - Evaluation

- MCTS phases:
 - 1. Selection
 - 2. Expansion

MCTS Phases - Backup

- MCTS phases:
 - Selection 1
 - 2. Expansion
 - **Evaluation** 3.
 - 4. Backup

values with $\hat{V}(s_{t+1})$

 $\langle \hat{Q}(s_t, a_3), N_{a_3} \rangle$ State s_{t+1} $\langle \hat{Q}(s_t, a_2), N_{a_2} \rangle$ a_1 a_3 a_2 $\langle 0, 0 \rangle$ $\langle 0, 0 \rangle$ $\langle 0, 0 \rangle$

 a_1

 $\langle \hat{\boldsymbol{Q}}(\boldsymbol{s_t}, \boldsymbol{a_1}), N_{a_1} + 1 \rangle$

 $\widehat{Q}(s_t, a_1) \leftarrow \widehat{Q}(s_t, a_1) + \frac{\Re(s_t, a_1) + \gamma \widehat{V}(s_{t+1}) - \widehat{Q}(s_t, a_1)}{N_{a_1} + 1}$

 a_3

State *s*_t

 a_2

MCTS and Policy Iteration

- MCTS phases:
 - 1. Selection Policy Improvement (e.g., maximize UCB1)

Policy Evaluation (estimate $Q^*(s_t, a_t)$)

- 2. Expansion
- 3. Evaluation
- 4. Backup

Given infinite simulations K, MCTS converges to the optimal best first tree for state $s_t \in S$, which corresponds to the **optimal policy** $\pi^*(s_t)$

Summary

• Dynamic Programming vs. Monte Carlo Planning

Algorithm	Evaluation	Improvement	Model Type	Optimality?
Policy Iteration	V^{π} and/or Q^{π} of current π	Maximize V^{π} and/or Q^{π}	Explicit	Yes
Value Iteration	V ⁿ via Bellman Update	Maximize current V^n	Explicit	Yes
MC Rollouts	$Q^{\pi_{rollout}}$ of $\pi_{rollout}$	Maximize $Q^{\pi_{rollout}}$ (at the end only)	Generative	No (depends on $\pi_{rollout}$)
MCTS	$Q^{\pi_{tree}}$ of current π_{tree}	Maximize $Q^{\pi_{tree}}$	Generative	Yes (with inifinite time)

46

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

Summary

- What we know so far:
 - Multi-armed bandits
 - Markov Decision Processes (MDPs)
 - Policies and Value Functions
 - Optimally solve MDPs with Dynamic Programming
 - Approximately solve MDPs with Monte Carlo Search

- What we don't know (yet):
 - How to find solutions without a model?

Prof. Dr. C. Linnhoff-Popien, Thomy Phan, Andreas Sedlmeier, Fabian Ritz - Praktikum Autonome Systeme

Thank you!