L
|||||||||| S-
UNIVERSITAT
MUNCHEN

Praktikum Mobile und Verteilte Systeme

Background Tasks and
Storage Options

Prof. Dr. Claudia Linnhoff-Popien et al.

Sommersemester 2019

Background Tasks — Why? z

* Main thread is in charge of handling
— Ul
— User interactions
— Receiving lifecycle events

e |f there is too much work the app appears to hang or slow down

Prof. Dr. C. Linnhoff-Popien et al. - Praktikum Mobile und Verteilte Systeme }"?*

'-& ®, mobile and 2

Sommersemester 2019, Client Server Communication L
distributed systems group

When do | need a Background Task? z

* Forlong-running computations and operations
— decoding a bitmap
— accessing the disk
— performing network requests

— In general, anything that takes more than a few milliseconds

e Tasks may also run even when the user is not actively using the app
— syncing periodically with a backend server
— fetching new content

Prof. Dr. C. Linnhoff-Popien et al. - Praktikum Mobile und Verteilte Systeme }"?*

'-& ®, mobile and 3

Sommersemester 2019, Client Server Communication L
distributed systems group

* The easiest solution for running tasks in the background are AsyncTasks

— should only be used for short operations (a few seconds at the most.)
— Examples:

* Downloading small content on a button press
* Calculations and other bigger operations on a button press

=>» This class allows you to perform background operations and publish
results on the Ul thread without having to manipulate threads and/or
handlers.

Prof. Dr. C. Linnhoff-Popien et al. - Praktikum Mobile und Verteilte Systeme }"F*
Sommersemester 2019, Client Server Communication “Jul®, mobile and 4

distributed systems group

AsyncTask<Params, Progress, Result> z

* An asynchronous task is defined by 3 generic types

— Params
— Progress
— Result

* and 4 steps
— onPreExecute
— dolnBackground
— onProgressUpdate
— onPostExecute.

Prof. Dr. C. Linnhoff-Popien et al. - Praktikum Mobile und Verteilte Systeme f'?*

'-L ®, mobile and 5

Sommersemester 2019, Client Server Communication L
distributed systems group

Downloading an Image with AsyncTask z

private class DownloadimageTask : AsyncTask<URL, Int, Long>() {

override fun dolnBackground(vararg urls: URL): Long? {
val count = urls.size
var totalSize: Long =0
for (i in O until count) {
totalSize += Downloader.downloadimage(urls]i])
publishProgress((i / count.toFloat() * 100).toInt())

}

return totalSize <:|

protected override fun onProgressUpdate(vararg progress: Int) { <:I
setProgressPercent(progress[0])

}

}

override fun onPostExecute(result: Long?) { <:|
showDownloadedImages|()

Prof. Dr. C. Linnhoff-Popien et al. - Praktikum Mobile und Verteilte Systeme }"F*
- Jul®, mobile and 6

Sommersemester 2019, Client Server Communication L
distributed systems group

Inline definition =

fun downloadButtonClicked() {

val myAnonymousAsyncTask = object : AsyncTask<ArrayList<URL>, Void, ArrayList<Bitmap>>() {
override fun doinBackground(vararg params: ArrayList<URL>?): ArrayList<Bitmap> {
return downloadAllThoselmages(params)

}

override fun onPostExecute(result: ArrayList<Bitmap>?) {
showAlllmages(result)

myAnonymousAsyncTask.execute()
L “ﬁ ...
©Jaf®, mobile and 7

Sommersemester 2019, Client Server Communication L
distributed systems group

* Not all background tasks publish to the Ul thread
* Some background tasks may take very long

e Background tasks consume a device's limited resources, like RAM and
battery.

=» This may result in a poor experience for the user if not handled correctly.

=» To maximize battery and enforce good app behavior, Android restricts
background work when the app (or a foreground service notification) is
not visible to the user.

Prof. Dr. C. Linnhoff-Popien et al. - Praktikum Mobile und Verteilte Systeme }"F*
Mf®, mobile and

Sommersemester 2019, Client Server Communication L
distributed systems group

* Android offers different solutions to different tasks
— DownloadManager
— Foreground Service
— WorkManager
— AlarmManager

Prof. Dr. C. Linnhoff-Popien et al. - Praktikum Mobile und Verteilte Systeme }"?*
Sommersemester 2019, Client Server Communication o ~Jul®, mobile and 9
distributed systems group

D loadM) d
ownioa danager o

* If your app is performing long-running HTTP downloads

* Clients may request that a URI be downloaded to a particular destination
file that may be outside of the app process

 The download manager will conduct the download in the background,
taking care of HTTP interactions and retrying downloads after failures or
across connectivity changes and system reboots.

Prof. Dr. C. Linnhoff-Popien et al. - Praktikum Mobile und Verteilte Systeme }"?*
Sommersemester 2019, Client Server Communication o ~Jul®, mobile and 10
distributed systems group

v
WorkManager -

* Triggered by system conditions

* For work that is deferrable and expected to run even if your device or
application restarts

WorkManager is an Android library that runs background tasks when the
conditions (like network availability and power) are satisfied.

WorkManager offers a backwards compatible (APl level 14+) API

 Example: You need to run a job every hour, but not at a specific time

Prof. Dr. C. Linnhoff-Popien et al. - Praktikum Mobile und Verteilte Systeme }"?*
Sommersemester 2019, Client Server Communication “Jul®, mobile and 11

distributed systems group

v
AlarmManger -

* |f you need to run a job at a precise time
* Launches your app, if necessary, to do the job at the time you specify

=>» If your job does not need to run at a precise time, WorkManager is a
better option

=>» If you need to run a job every hour you should use WorkManager to set
up a recurring job

Prof. Dr. C. Linnhoff-Popien et al. - Praktikum Mobile und Verteilte Systeme }"?*
Sommersemester 2019, Client Server Communication “Jul®, mobile and 12

distributed systems group

Android Services

e A Service is an application component that can perform long-running
operations in the background, and it doesn't provide a user interface.

* Another application component can start a service, and it continues to
run in the background even if the user switches to another application.

* Additionally, a component can bind to a service to interact with it.

* Examples: Network transactions, play music, perform file 1/0O, or interact
with a content provider

Prof. Dr. C. Linnhoff-Popien et al. - Praktikum Mobile und Verteilte Systeme }"?*
Sommersemester 2019, Client Server Communication “l®, mobile and 13

distributed systems group

i L 4
Types of Services -

* These are the three different types of services:
— Foreground
— Background
— Bound

Prof. Dr. C. Linnhoff-Popien et al. - Praktikum Mobile und Verteilte Systeme ﬁ
& . mobile and

Sommersemester 2019, Client Server Communication —
distributed systems group

- L 4
Foreground Services -

* For user-initiated work that need to run immediately and must execute to
completion

e Using a foreground service tells the system that the app is doing
something important and it shouldn’t be killed

* Foreground services are visible to users via a non-dismissible notification
in the notification tray.

=» Example: Continous Location Tracking

Prof. Dr. C. Linnhoff-Popien et al. - Praktikum Mobile und Verteilte Systeme }"?*
- Jul®, mobile and 15

Sommersemester 2019, Client Server Communication L
distributed systems group

Background Services (deprecated?)

* A background service performs an operation that isn't directly noticed by
the user.

* For example, if an app used a service to compact its storage, that would
usually be a background service.

* Note: If your app targets APl level 26 or higher, the system
imposes restrictions for background tasks

* In most cases like this, your app should use a scheduled job instead.

Prof. Dr. C. Linnhoff-Popien et al. - Praktikum Mobile und Verteilte Systeme }"?*
Sommersemester 2019, Client Server Communication “Jul®, mobile and 16

distributed systems group

Bound Services

* Aservice is bound when an application component binds to it by
calling bindService().

e Allows components to interact with the service

* A bound service runs only as long as another application component is
bound to it.

* Multiple components can bind to the service at once, but when all of
them unbind, the service is destroyed.

Prof. Dr. C. Linnhoff-Popien et al. - Praktikum Mobile und Verteilte Systeme }"?*
Sommersemester 2019, Client Server Communication “Jul®, mobile and 17

distributed systems group

."

- - Y
Creating a Service -

* |ntentService as the Base class
* provides structure for running an operation on a background thread.
* An IntentService isn't affected by most lifecycle events
- It continues to run in circumstances that would shut down
an AsyncTask
* Limitations
— Can'tinteract directly with your user interface
— Can't be interrupted
Prof. Dr. C. Linnhoff-Popien et al. - Praktikum Mobile und Verteilte Systeme _i'?: e and 18

Sommersemester 2019, Client Server Communication L
distributed systems group

Declaring your Service in the Manifest z

<application
android:icon="@drawable/icon"
android:label="@string/app_name">

<l--
Because android:exported is set to "false",
the service is only available to this app.
-->
<service
android:name=".RSSPullService"
android:exported="false"/>

</application>

=» You must declare all services in your application's manifest file, just as you
do for activities and other components.

Prof. Dr. C. Linnhoff-Popien et al. - Praktikum Mobile und Verteilte Systeme ﬁ
& , mobile and

Sommersemester 2019, Client Server Communication distributed systems group

- v
Implement your Service -

* To create an IntentService component for your app, define a class that
extends IntentService, and within it, define a method that
overrides onHandlelntent().

class RSSPullService : IntentService(RSSPullService::class.simpleName)

override fun onHandlelntent(workIntent: Intent) {
// Gets data from the incoming Intent
val dataString = workintent.dataString

// Do work here, based on the contents of dataString

Prof. Dr. C. Linnhoff-Popien et al. - Praktikum Mobile und Verteilte Systeme ﬁ
“Jni¥, mobile and

Sommersemester 2019, Client Server Communication —
distributed systems group

Broadcasts

* Android apps can send or receive broadcast messages from the Android
system and other Android apps

* Publish-subscribe design pattern

* The Android system sends broadcasts when system events occur
— system boots up
— device starts charging

e Apps can also send custom broadcasts
— e.g. some new data has been downloaded

* Apps can register to receive specific broadcasts

Prof. Dr. C. Linnhoff-Popien et al. - Praktikum Mobile und Verteilte Systeme }"F*

‘-L ®, mobile and 21

Sommersemester 2019, Client Server Communication L
distributed systems group

Creating a BroadcastReceiver (1) z

Specify the <receiver> element in your app's manifest.

<receiver android:name=".MySystemBroadcastReceiver" android:exported="true">
<intent-filter>
<action android:name="android.intent.action.BOOT_COMPLETED"/>
</intent-filter>
</receiver>

<receiver android:name=".MyCustomBroadcastReceiver" android:exported="“false">

<intent-filter>
<action android:name="de.Imu.ifi.mobile.MY_IMAGE_EVENT"/>
</intent-filter>
</receiver>
meDrCLmnhoﬁpoplenetalPraktlkumMOb”eundverte”tesysteme%ﬁmblm ____________ 22 _____

Sommersemester 2019, Client Server Communication distributed systems group

Creating a BroadcastReceiver (1.1) z

OR register a receiver with a context

* Receive broadcasts as long as their registering context is valid

* For an example, if you register within an Activity context, you receive
broadcasts as long as the activity is not destroyed.

* |If you register with the Application context, you receive broadcasts as long
as the app is running.

val br: BroadcastReceiver = MyBroadcastReceiver()

val filter = IntentFilter(“de.Imu.ifi.mobile. MY_IMAGE_EVENT")
registerReceiver(br, filter)

Prof. Dr. C. Linnhoff-Popien et al. - Praktikum Mobile und Verteilte Systeme ﬁ
“Jni¥, mobile and

Sommersemester 2019, Client Server Communication L
distributed systems group

Creating a BroadcastReceiver (2)

Subclass BroadcastReceiver and implement onReceive(Context, Intent).

private const val TAG = "MyBroadcastReceiver"
class MyBroadcastReceiver : BroadcastReceiver() {

override fun onReceive(context: Context, intent: Intent) { <:|
StringBuilder().apply {
append("Action: S{intent.action}\n")
append("URI: S{intent.toUri(Intent.URI_INTENT_SCHEME)}\n")
toString().also { log ->
Log.d(TAG, log)
Toast.makeText(context, log, Toast.LENGTH LONG).show()
}

Prof. Dr. C. Linnhoff-Popien et al. - Praktikum Mobile und Verteilte Systeme ﬁ
& . mobile and

Sommersemester 2019, Client Server Communication —
distributed systems group

- L 4
Sending a Broadcast -

Intent().also { intent ->
intent.setAction(“de.Imu.ifi.mobile.MY_IMAGE_EVENT")
intent.putExtra("data”, mylmage)
sendBroadcast(intent)

}

Prof. Dr. C. Linnhoff-Popien et al. - Praktikum Mobile und Verteilte Systeme %
“Jni¥, mobile and

Sommersemester 2019, Client Server Communication L
distributed systems group

Interact with a Service by binding to it

* A bound service is the server in a client-server interface.

* |t allows components (such as activities) to bind to the service, send
requests, receive responses

* A bound service typically lives only while it serves another application
component and does not run in the background indefinitely.

Prof. Dr. C. Linnhoff-Popien et al. - Praktikum Mobile und Verteilte Systeme }"?*

'-& ®, mobile and

Sommersemester 2019, Client Server Communication L
distributed systems group

Creating a BoundService

class LocalService : Service() {
// Binder given to clients
private val binder = LocalBinder()

/**
* Class used for the client Binder. Because we know this service always
* runs in the same process as its clients, we don't need to deal with IPC.
*/
inner class LocalBinder : Binder() {
// Return this instance of LocalService so clients can call public methods
fun getService(): LocalService = this@LocalService

}

override fun onBind(intent: Intent): IBinder { <:I
return binder

Prof. Dr. C. Linnhoff-Popien et al. - Praktikum Mobile und Verteilte Systeme {3
& , mobile and 27

Sommersemester 2019, Client Server Communication distributed systems group

Bind to a Service

class BindingActivity : Activity() {
private lateinit var mService: LocalService
private var mBound: Boolean = false

/** Defines callbacks for service binding, passed to bindService() */
private val connection = object : ServiceConnection {

override fun onServiceConnected(className: ComponentName, service: IBinder) {
// We've bound to LocalService, cast the IBinder and, get LocalService instance
val binder = service as LocalService.LocalBinder
mService = binder.getService()
mBound = true

override fun onServiceDisconnected(arg0: ComponentName) {
mBound = false

}
}

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.main)

override fun onStart() {
super.onStart()
// Bind to LocalService
Intent(this, LocalService::class.java).also { intent ->
bindService(intent, connection, Context.BIND_AUTO CREATE) <:
}
}

override fun onStop() {
super.onStop()
unbindService(connection)
mBound = false

}

Prof. Dr. C. Linnhoff-Popien et al. - Praktikum Mobile und Verteilte Systeme

Sommersemester 2019, Client Server Communication

'Lﬁ mobile and

distributed systems group

Choosing the right solution (4)

Long-running

downloads ?

Deferrable

Triggered by

conditions?

Run at precise

HTTP

work?

system

time?

WorkManager

DownloadManager

Foreground service

WorkManager

AlarmManager

Prof. Dr. C. Linnhoff-Popien et al. - Praktikum Mobile und Verteilte Systeme

Sommersemester 2019, Client Server Communication

ﬁ")ﬁ
©- Jud®, mobile and

distributed systems group

Data and file storage

* Android provides several options for you to save your app data.

* The solution you choose depends on your specific needs
— How much space your data requires
— What kind of data you need to store
— Whether the data should be private to your app

Prof. Dr. C. Linnhoff-Popien et al. - Praktikum Mobile und Verteilte Systeme }"?*

'-& ': mobile and 30

Sommersemester 2019, Client Server Communication L
distributed systems group

Storage Options

* Internal file storage
* External file storage
* Shared preferences
e Databases

Prof. Dr. C. Linnhoff-Popien et al. - Praktikum Mobile und Verteilte Systeme f'?*

'-L ': mobile and 31

Sommersemester 2019, Client Server Communication L
distributed systems group

Internal file storage

e Default: Files saved to the internal storage are private
— other apps cannot access them
— nor can the user without root
=>» Good for app data that the user doesn't need to directly access

* The system provides a private directory on the file system for each app
where you can organize any files your app needs.

Prof. Dr. C. Linnhoff-Popien et al. - Praktikum Mobile und Verteilte Systeme }"F*

‘-L ®, mobile and 32

Sommersemester 2019, Client Server Communication L
distributed systems group

What happens on uninstall?

 When the user uninstalls your app, the files saved on the internal storage
are removed.

* Because of this behavior, you should not use internal storage to save
anything the user expects to persist independently of your app

 Exmample: Your app allows users to capture photos

— the user would expect that they can access those photos even after
they uninstall your app

— You should instead use the MediaStore API

Prof. Dr. C. Linnhoff-Popien et al. - Praktikum Mobile und Verteilte Systeme }“F*
Sommersemester 2019, Client Server Communication ©Jal®, mobile and 33

distributed systems group

https://developer.android.com/reference/android/provider/MediaStore

Save to the internal storage

val file = File(context.filesDir, filename)

val filename = "myfile"

val fileContents = "Hello world!"

context.openFileOutput(filename, Context. MODE_PRIVATE).use {
it.write(fileContents.toByteArray())

Prof. Dr. C. Linnhoff-Popien et al. - Praktikum Mobile und Verteilte Systeme }“F*
Sommersemester 2019, Client Server Communication ©Jal®, mobile and 34

distributed systems group

External file storage

* Every Android device supports a shared "external storage"
 External” because it's not guaranteed to be accessible
* Users can mount it to a computer as an external storage device
* It might even be physically removable (such as an SD card)
e External storage is world-readable and can be modified by the user
Prof. Dr. C. Linnhoff-Popien et al. - Praktikum Mobile und Verteilte Systeme ﬁ N .

Sommersemester 2019, Client Server Communication L
distributed systems group

Check for availability on external Storage

Before you access a file in external storage check the availability of
— external storage directories
— the files you are trying to access

* Use external storage for data that should be accessible to other apps and
saved even if the user uninstalls your app

* The system provides standard public directories for these kinds of files

* You can also save files to the external storage in an app-specific directory
that the system deletes when the user uninstalls your app.

— If you need more space
— Still world-readable

Prof. Dr. C. Linnhoff-Popien et al. - Praktikum Mobile und Verteilte Systeme }"F*

Sommersemester 2019, Client Server Communication o ©Jal®, mobile and 36
distributed systems group

Save to the external storage (1)

Requires permission WRITE_EXTERNAL _STORAGE

<manifest ...>
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

</manifest>

Check if the external storage is available

/* Checks if external storage is available for read and write */
fun isExternalStorageWritable(): Boolean {
return Environment.getExternalStorageState() == Environment.MEDIA_MOUNTED

}

/* Checks if external storage is available to at least read */
fun isExternalStorageReadable(): Boolean {
return Environment.getExternalStorageState() in
setOf(Environment.MEDIA_MOUNTED, Environment.MEDIA_ MOUNTED READ_ONLY)

Prof. Dr. C. Linnhoff-Popien et al. - Praktikum Mobile und Verteilte Systeme ﬁv
& . mobile and

Sommersemester 2019, Client Server Communication —
distributed systems group

Save/read the external storage (2)

fun getPublicAlbumStorageDir(albumName: String): File? {
// Get the directory for the user's public pictures directory.
val file = File(Environment.getExternalStoragePublicDirectory(
Environment.DIRECTORY_ PICTURES), albumName)
if (Mfile?.mkdirs()) {
Log.e(LOG_TAG, "Directory not created")
}

return file

Prof. Dr. C. Linnhoff-Popien et al. - Praktikum Mobile und Verteilte Systeme

ﬁ%
Sommersemester 2019, Client Server Communication ~ "~wi® mobile and 38
distributed systems group

Shared Preferences

e “Shared preferences" is a bit misleading because it is not strictly for saving
"user preferences" (such as what ringtone a user has chosen)

* You can save any kind of simple data (such as the user's high score)

* If you don't need to store a lot of data and it doesn't require structure,
you should use SharedPreferences

* Read and write persistent key-value pairs of primitive data types:
booleans, floats, ints, longs, and strings

* Key-value pairs are written to XML files that persist across user sessions

=» However, if you do want to save user preferences:
Use the AndroidX Preference Library to build a settings screen and
automatically persist the user's settings.

Prof. Dr. C. Linnhoff-Popien et al. - Praktikum Mobile und Verteilte Systeme "%

fa
Sommersemester 2019, Client Server Communication o 4%, mobile and 39
distributed systems group

Read/write to SharedPreferences

val sharedPref = activity?.getPreferences(Context. MODE_PRIVATE) ?: return

// Write

with (sharedPref.edit()) {
putint(“My_Int_Key", newHighScore)
commit()

}

// Read

val sharedPref = activity?.getPreferences(Context. MODE_PRIVATE) ?: return
val highScore = sharedPref.getint(“My Int_Key", 20)

Prof. Dr. C. Linnhoff-Popien et al. - Praktikum Mobile und Verteilte Systeme f'?*

Sommersemester 2019, Client Server Communication o ©Jal®, mobile and 40
distributed systems group

Databases

* Android provides full support for SQLite databases.
* Any database you create is accessible only by your app

e Recommended to use the Room persistence library

— provides an object-mapping abstraction layer that allows fluent
database access while harnessing the full power of SQLite.

— Compile-time verification
— Automatic scheme changes
— No boilerplate code

Prof. Dr. C. Linnhoff-Popien et al. - Praktikum Mobile und Verteilte Systeme }"F*
Sommersemester 2019, Client Server Communication o ~Jul®, mobile and 41
distributed systems group

Room Database

Get Entities from db

Persist changes
Get DAO back to db

J 1 get / set field values

Rest of The App

Prof. Dr. C. Linnhoff-Popien et al. - Praktikum Mobile und Verteilte Systeme P‘ﬁ
E . mobile and

Sommersemester 2019, Client Server Communication distrib Sretamta OrOUD

@Entity

data class User(
@PrimaryKey val uid: Int,
@Columnlinfo(name = "first_name") val firstName: String?,
@Columninfo(name = "last_name") val lastName: String?

Prof. Dr. C. Linnhoff-Popien et al. - Praktikum Mobile und Verteilte Systeme ﬁv
& . mobile and

Sommersemester 2019, Client Server Communication —
distributed systems group

Data Access Objects (DAO)

@Dao

interface UserDao {
@Query("SELECT * FROM user")
fun getAll(): List<User>

@Query("SELECT * FROM user WHERE uid IN (:userlds)")
fun loadAlIBylds(userlds: IntArray): List<User>

@Query("SELECT * FROM user WHERE first_name LIKE :first AND " +
"last_name LIKE :last LIMIT 1")
fun findByName(first: String, last: String): User

@Insert
fun insertAll(vararg users: User)
@Delete
fun delete(user: User)
e fﬁ __
t ., mobile and 44

Sommersemester 2019, Client Server Communication distributed systems group

Room Database

@Database(entities = arrayOf(User::class), version = 1)
abstract class AppDatabase : RoomDatabase() {
abstract fun userDao(): UserDao

}

I Whenever you change the scheme of your database (e.g. the user gets the field
,phone_number”) =» Increase the version

Get the database object

val db = Room.databaseBuilder(
applicationContext,
AppDatabase::class.java, "database-name"
).build()

Prof. Dr. C. Linnhoff-Popien et al. - Praktikum Mobile und Verteilte Systeme ﬁ
“Jni¥, mobile and

Sommersemester 2019, Client Server Communication —
distributed systems group

Test your database

@RunWith(AndroidJUnit4::class)

class SimpleEntityReadWriteTest {
private lateinit var userDao: UserDao
private lateinit var db: TestDatabase

@Before
fun createDb() {
val context = ApplicationProvider.getApplicationContext<Context>()
db = Room.inMemoryDatabaseBuilder(
context, TestDatabase::class.java).build()
userDao = db.getUserDao() <:|

}

@Test
@Throws(Exception::class)

fun writeUserAndReadInList() { :

val user: User = TestUtil.createUser(3).apply {
setName("george")

}

userDao.insert(user) g:l

val byName = userDao.findUsersByName("george")
assertThat(byName.get(0), equalTo(user))

Prof. Dr. C. Linnhoff-Popien et al. - Praktikum Mobile und Verteilte Systeme %_*
©Jaf®, mobile and

Sommersemester 2019, Client Server Communication —
distributed systems group

Useful links

e Async Task
https://developer.android.com/reference/android/os/AsyncTask

e Background Tasks
https://developer.android.com/guide/background/

e Data Storage
https://developer.android.com/guide/topics/data/data-storage

Prof. Dr. C. Linnhoff-Popien et al. - Praktikum Mobile und Verteilte Systeme ﬁv
& . mobile and

Sommersemester 2019, Client Server Communication —
distributed systems group

https://developer.android.com/reference/android/os/AsyncTask
https://developer.android.com/guide/background/
https://developer.android.com/guide/topics/data/data-storage

