
Prof. Dr. Claudia Linnhoff-Popien
Michael Beck, André Ebert
http://www.mobile.ifi.lmu.de

SS 2017

Praktikum Mobile und Verteilte Systeme

Android-Basics

http://www.mobile.ifi.lmu.de/

Prof. Dr. C. Linnhoff-Popien, Michael Beck, André Ebert - Praktikum Mobile und Verteilte Systeme

SS 2017 Android-Basics

Programming with Android

Today:

• Android basics

• Components of an Android application

• Communication between components

• Google Services

• Android Studio as Android IDE

• …

2

Prof. Dr. C. Linnhoff-Popien, Michael Beck, André Ebert - Praktikum Mobile und Verteilte Systeme

SS 2017 Android-Basics

What is Android?

• Android is a multi-user, Linux-based OS developed
by Google and the Open Handset Alliance

• primarily designed for touchscreen mobile devices
based on direct manipulation by the user

• the Android code is open source,
released under the Apache License (freely modifiable)

• comes with some standard smartphone applications

• the Android SDK offers free developer tools,
API libraries, and an IDE (IntelliJ based)

• allows for simple application (app)
development using customized Java

3

http://developer.android.com/sdk/index.html

Prof. Dr. C. Linnhoff-Popien, Michael Beck, André Ebert - Praktikum Mobile und Verteilte Systeme

SS 2017 Android-Basics

Android statistics I

• In September 3, 2013: 1 billion Android devices became activated

• Q2 2016: Android has become the world's most popular smartphone
platform with a market share of 86,2% (excluding, US, Australia, and
Japan)

• is deployed on tv-sets, games consoles, digital cameras, watches, ...

4

OS Q2 2016 Market
Share

Android 86.2%

iOS 12.9%

Microsoft Windows
Phone

0.6%

BlackBerry (RIM) 0.1%

Others 0.2%

Total 100.0%

https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/

Prof. Dr. C. Linnhoff-Popien, Michael Beck, André Ebert - Praktikum Mobile und Verteilte Systeme

SS 2017 Android-Basics

Android statistics II

5

http://developer.android.com/

Android Versions Share
(March 2017)

“In July 2015 there were more than 24,000 different
models of Android devices, scores of screen sizes
and eight OS versions simultaneously in use.”

https://en.wikipedia.org/wiki/Android_(op
erating_system)/

Android Display Size /
Resolution Share 2016

Prof. Dr. C. Linnhoff-Popien, Michael Beck, André Ebert - Praktikum Mobile und Verteilte Systeme

SS 2017 Android-Basics

Evolution of Android I

• Beta version released in 2007

• commercially released in 2008 (Android 1.0)

• from April 2009 onwards: dessert codenames,
i.e., Cupcake, Donut, Eclaire, Froyo, Gingerbread,
Honeycomb, Ice Cream Sandwich, Jelly Bean, KitKat, …

• OS updates refer to API updates (version codes vs. API levels)

– offering both new functionality and restrictions for app developers

• Current version: Android 7.0 / 7.1.x Nougat (N)
API Level 25 (since April 4th, 2017)

• Upcoming: Android 8.0 („O“ Preview available since March 21st)

6

Prof. Dr. C. Linnhoff-Popien, Michael Beck, André Ebert - Praktikum Mobile und Verteilte Systeme

SS 2017 Android-Basics

Evolution of Android II

• API level New features
– 5 Bluetooth 2.1, support for more screen sizes, …

– 8 C2DM service for push notifications, …

– 9 UI update, NFC support, new sensors, rich multimedia, …

– 11 tablet-only version, new UI and animation frameworks,
StrictMode for network access, …

– 14 unified UI framework, social API, calendar API, Android Beam,
VPN API…

– 16 improved memory management, improved app stack
navigation, new permissions, …

– 17 support for secondary displays, rtl-UIs, multiple users, …

– 18 restricted profiles, Wi-Fi scan-only mode, BLE / 4.0 …

– 19 printing framework, new NFC reader mode, adaptive video

playback, …

 20 customized for smartwatches and wearables, …

 21 material design, Android runtime, native 64 Bit

 22 dual Sim, HD speech transmission, …

 23 new permission system, USB type-c, native fingerprint scan, Android-Pay, …

7

Prof. Dr. C. Linnhoff-Popien, Michael Beck, André Ebert - Praktikum Mobile und Verteilte Systeme

SS 2017 Android-Basics

Evolution of Android III

8

• Android 7.0 Nougat (API Level 24)

– Performance: JIT compiler improves performance, faster updates for

System and Apps, less usage of storage space

– Doze: Lower Power usage when phone is moved (Smartphone is „dozier“)

– Easier handling: Split-Screen Mode + Quick Switch

– Picture-in-picture mode

– Bundled notifications

– Direct Boot

– File-based Encryption (instead of block-based)

– Trusted Face – more robust face recognition

– Work-mode

– …

Prof. Dr. C. Linnhoff-Popien, Michael Beck, André Ebert - Praktikum Mobile und Verteilte Systeme

SS 2017 Android-Basics

Android basics – System architecture (until 5.0)

9

http://en.wikipedia.org/wiki/Android_(operating_system)

Prof. Dr. C. Linnhoff-Popien, Michael Beck, André Ebert - Praktikum Mobile und Verteilte Systeme

SS 2017 Android-Basics

Android System Architecture (since 5.0)

10

https://developer.android.com/guide/platform/index.html

– Android System is Open Source: own

interfaces and enhancements may be

provided

– E.g., HAL modules can be defined in

hardware.h

– Abstraction of high-level application

development and lower-level hardware

programming (drivers, etc.)

typedef struct camera_module {

hw_module_t common;

int (*get_number_of_cameras)(void);

int (*get_camera_info)(int camera_id, struct camera_info *info);

} camera_module_t;

Prof. Dr. C. Linnhoff-Popien, Michael Beck, André Ebert - Praktikum Mobile und Verteilte Systeme

SS 2017 Android-Basics

Android basics – Dalvik Virtual Machine vs. ART

• Java code is typically compiled into Bytecode

• At runtime, a Virtual Machine translates this code into machine code

– e.g., Java Virtual Machine (JVM) on Desktop PCs (stack-based)

• Android, however, uses the Android Runtime (ART)

– Replaces Dalvik VM since version 5.0 (backward compatible)

– All Apps running within own processes and own ART-instance (multiple
virtual machines)

– Transformes Bytecode directly to binary code upon installation

– Faster execution, improved garbage collection and memory allocation

– 64-Bit support

– Apps are stored compiled

11

Java Source Code
Java Byte

Code

Resources +
Native

Instructions

Android
Runtime

Ahead-of-time (AOT) compilationJava compiler

Prof. Dr. C. Linnhoff-Popien, Michael Beck, André Ebert - Praktikum Mobile und Verteilte Systeme

SS 2017 Android-Basics

Android basics – Security

• Android implements the principle of least privilege for its apps

• Each Android app resides in its own kernel-level security sandbox:

– each application is a different user

– access permissions for all of an application’s files
are based on the Linux user ID

– every application runs in its own Linux process

– each process has its own VM (adds to stability)

• Apps can request permission to access device data and services, such as
user's contacts, SMS messages, SD card, camera, internet, …

• All application permissions must be requested by the developer in the
app’s Manifest file and granted by the user

12

http://android-developers.blogspot.de/2013/06/google-play-
developer-8-step-checkup.html

Prof. Dr. C. Linnhoff-Popien, Michael Beck, André Ebert - Praktikum Mobile und Verteilte Systeme

SS 2017 Android-Basics

Android process and memory management

• Android employs real application multi-tasking,
optimized for a mobile usage pattern

• Requirements:

– apps should appear “always running”

– no swap space → hard limits on memory usage

– app switching in less than 1 second

• Implementation:

– LRU list of running apps with preferences

– when memory gets low, Android kills the least important process

– Bundle class can be used for saving application state

• developers have to take care of correctly saving an instance‘s
state

13

Prof. Dr. C. Linnhoff-Popien, Michael Beck, André Ebert - Praktikum Mobile und Verteilte Systeme

SS 2017 Android-Basics

Android application threads

• Every application is initiated with a single main thread (UIThread)

• If time-consuming tasks are performed on the main thread, the UI blocks

– leads to ANR dialog after 5 seconds

– instead, extra worker threads should be used

• the Android UI toolkit is not thread-safe and hence must not be
manipulated from a worker thread

Rules:

1) Do not block the UI thread!

2) Do not access the Android UI toolkit from outside the UI thread!

• Recommendation: use the Handler-, Java Thread-, Loader-
and AsyncTask-classes

14

Prof. Dr. C. Linnhoff-Popien, Michael Beck, André Ebert - Praktikum Mobile und Verteilte Systeme

SS 2017 Android-Basics

Android application components

• Android apps might consist of several different building blocks

– Activities

– Fragments

– Loaders

– Services

– Content Providers

– Broadcast Receivers

• Each component performs different tasks

• Each component has its own distinct lifecycle that you have
to take care of as a developer in order to keep your app stable

15

http://developer.android.com/guide/components/index.html

Prof. Dr. C. Linnhoff-Popien, Michael Beck, André Ebert - Praktikum Mobile und Verteilte Systeme

SS 2017 Android-Basics

Activities

• Implemented as a subclass of android.app.Activity

• An activity represents a single screen with a user interface

• Started on App start or by firing Intents

– typically defined in XML, not in code

– Model-View-Controller (MVC) pattern

16

Prof. Dr. C. Linnhoff-Popien, Michael Beck, André Ebert - Praktikum Mobile und Verteilte Systeme

SS 2017 Android-Basics

Fragments

• represent a UI portion of an Activity (i.e., a “subactivity”)

• can be combined in a single activity to build multi-pane UIs,
but cannot stand alone

• enable the reuse of code in
multiple activities

• have their own lifecycle, too,
but based on the host
Activity’s current state

• can be managed in the
Activity back stack

• different fragment combinations for different screen sizes

– e.g., in order to support both tablets and phones, different layout
configs can be used to make optimal use of the available screen space

17

Prof. Dr. C. Linnhoff-Popien, Michael Beck, André Ebert - Praktikum Mobile und Verteilte Systeme

SS 2017 Android-Basics

Loaders

• Introduced in Android 3.0 (API Level 11)

• Used to load data from a Content Provider

• Avoid a lack of responsiveness due to performing slow queries on the UI
thread

• Loaders are using separate threads

• Thread management is simplified by providing callbacks in case of
occurring events

• Results may be cached, even across configuration changes

• Loaders may monitor data sources and underlying data in order to react
to changes

18

Prof. Dr. C. Linnhoff-Popien, Michael Beck, André Ebert - Praktikum Mobile und Verteilte Systeme

SS 2017 Android-Basics

Services

• Java class implemented as a subclass of android.app.Service

• running in the background (without direct user interaction)

• intended for long-running operations, e.g. playing music, fetching
network data

• can be started (and stopped) from an Activity

– in order to interact with a Service, an Activity can “bind” to it

• Services can request being considered foreground („please dont kill me“)

– indicated by an icon in the status bar to create user awareness

• a process running a service is ranked higher than a process with
background activities (and is hence less likely to be killed)

19

Prof. Dr. C. Linnhoff-Popien, Michael Beck, André Ebert - Praktikum Mobile und Verteilte Systeme

SS 2017 Android-Basics

BroadcastReceivers

• implemented as a subclass of BroadcastReceiver

• each broadcast is delivered as an Intent object

• respond to system-wide broadcast announcements:

– screen turned off

– battery status

– picture captured

– custom broadcasts

• do not display a user interface

• usually, a broadcast receiver is just a gateway to other app components,
e.g., by starting an Activity or Service upon a certain event

20

Prof. Dr. C. Linnhoff-Popien, Michael Beck, André Ebert - Praktikum Mobile und Verteilte Systeme

SS 2017 Android-Basics

ContentProviders

• implemented as a subclass of ContentProvider

• must implement a standard set of APIs enabling other applications to
perform transactions (CRUD operations) on the app’s information

• manages shared application data, stored in files, SQLite databases,
on the web, …

• can also be used internally by an App for storing/retrieving private
information

• Examples: Android contact information / Android MediaStore / etc.

– any application (given it has the right permissions) is able to query
this content provider to read or modify contact information

21

Prof. Dr. C. Linnhoff-Popien, Michael Beck, André Ebert - Praktikum Mobile und Verteilte Systeme

SS 2017 Android-Basics

Activity lifecycle management

• crucial for developing strong and
flexible applications

• An activity can exist in essentially
three states:

– Resumed
The activity is in the foreground
of the screen and has user focus

– Paused
Another activity is in the
foreground and has focus, but
this one is still visible

– Stopped
The activity is completely
obscured by another activity
(i.e., in the background)

22

Prof. Dr. C. Linnhoff-Popien, Michael Beck, André Ebert - Praktikum Mobile und Verteilte Systeme

SS 2017 Android-Basics

Android Manifest

• Each application must have an
AndroidManifest.xml file

• The manifest file must declare

– an app’s Java package name

– all of an app’s components (activities, services, …)

– all of the app’s requirements (min. Android version, hardware, …)

• and might also declare

– intent filters (for implicit intents)

– custom permissions

– used libraries (apart from the standard Android lib)

– required permissions

– …

24

<manifest …>

<application …>

<service android:name="de.lmu.ifi.…" …>

…

</service>

…

</application>

</manifest>

Prof. Dr. C. Linnhoff-Popien, Michael Beck, André Ebert - Praktikum Mobile und Verteilte Systeme

SS 2017 Android-Basics

Android permissions

• by default, no app is allowed to perform any protected operations

• the permission mechanism can be used for a (moderately)
fine-grained control of what features an app can access

– internet, camera, SMS, contacts, reboot, …

• at install time, a user has to accept the requested permissions (do-or-die)

• since Android 4.3, there‘s a (hidden) functionality to withdraw
individual permissions

• Since Android 6.0, it is possible to install Apps without granting all
permissions

• custom permissions can be defined, controlling…

– from which apps broadcasts might be received

– who is allowed to start an activity or a service

25

Prof. Dr. C. Linnhoff-Popien, Michael Beck, André Ebert - Praktikum Mobile und Verteilte Systeme

SS 2017 Android-Basics

Android resources

• all types of non-code resources (images, strings,
layout files, etc.) should be managed externally

– allowing customized alternatives for each
special use-case (different strings for
different languages, customized layouts for different screen sizes)

– requires each resource to have a unique resource id, which is
generated automatically

• resource types:

– Bitmap / Drawable files (res/drawable, res/mimap-hdpi…)

– XML layout files (res/layout)

– string literals and value arrays (res/values)

– …

• alternatives are provided in separate folders:
<resource_name>-<qualifier1[-qualifier2]>

26

https://developer.android.com/guide/topics/resources/index.html

Prof. Dr. C. Linnhoff-Popien, Michael Beck, André Ebert - Praktikum Mobile und Verteilte Systeme

SS 2017 Android-Basics

R.java???

• when compiling your project, a class called R.java is generated
– contains subclasses for each type of resources and IDs

• resources provided externally can be accessed in code using the projects R
class and the corresponding resource‘s type and ID

• a resource ID is composed of
– the resource type (e.g., string)
– the resource name (filename or XML attribute “name“)

• Resources can be accessed in code:
getString(R.string.<resource-name>)
and in XML: @string/<resource-name>

• (<Classcast>)findViewById(R.layout.<layout-name>)

Rules:
Never touch R.java!

Never import android.R!

27

Prof. Dr. C. Linnhoff-Popien, Michael Beck, André Ebert - Praktikum Mobile und Verteilte Systeme

SS 2017 Android-Basics

Google Services

• Google offers app developers a number of
handy services and APIS that may be integrated

• these services, however, are not part of the Android platform

– Google Cloud Messaging Service
allows developers to send push notification to their users

– Google Location Services
offer utilities for painlessly building location based services (LBS)

– Google+
allows authentication, social graph interactions, etc.

– Google Maps, Google Play Services, …

28

https://developer.android.com/google/index.html

Prof. Dr. C. Linnhoff-Popien, Michael Beck, André Ebert - Praktikum Mobile und Verteilte Systeme

SS 2017 Android-Basics

Android platform tools

• The Android Developer Tools (ADT) contain a variety of useful tools for
application programming, debugging and publishing

– SDK Manager

– ADB (Android Debug Bridge)

• devices

• shell

• push/pull

• install/uninstall

• logcat

– DX

• converts .class files into .dex format

– DEXDUMP

– Android Device Emulator / AVD Manager

– GUI Builder

– DDMS (standalone, e.g., for resource usage monitoring)

29

Prof. Dr. C. Linnhoff-Popien, Michael Beck, André Ebert - Praktikum Mobile und Verteilte Systeme

SS 2017 Android-Basics

Android IDE

• Android Studio

– based on IntelliJ IDEA

– Android-specific refactoring

– integration of Android XML resources

– graphical UI editor

– virtual device emulator

– Integrated Debugging

– App Signing

• Android Developer Tools (ADT) Eclipse plugin

 same Features as above

 BUT: Deprecated

30

https://developer.android.com/tools/index.html

Prof. Dr. C. Linnhoff-Popien, Michael Beck, André Ebert - Praktikum Mobile und Verteilte Systeme

SS 2017 Android-Basics

Where to start…

https://developer.android.com/

31

Prof. Dr. C. Linnhoff-Popien, Michael Beck, André Ebert - Praktikum Mobile und Verteilte Systeme

SS 2017 Android-Basics

Programming with Android – Practical

• IDE installation and setup (Android Studio)

• „HelloAndroid“

• using the emulator, using adb, enabling hardware acceleration

• …

32

