

Praktikum Mobile und Verteilte Systeme

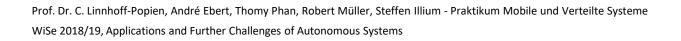
Applications and Further Challenges of Autonomous Systems

Prof. Dr. Claudia Linnhoff-Popien André Ebert, Thomy Phan, Robert Müller, Steffen Illium <u>http://www.mobile.ifi.lmu.de</u>

WiSe 2018/19

Outline

- An Introduction to Autonomous Systems
 - Motivation, Definition and Challenges
 - Artificial Intelligence
- Decision Making in Autonomous Systems
 - Markov Decision Processes
 - Planning
 - Reinforcement Learning
- Applications and Further Challenges
 - Deep Reinforcement Learning
 - Combining Planning and Reinforcement Learning
 - Further Challenges



Outline

- An Introduction to Autonomous Systems
 - Motivation, Definition and Challenges
 - Artificial Intelligence
- Decision Making in Autonomous Systems
 - Markov Decision Processes
 - Planning
 - Reinforcement Learning

Applications and Further Challenges

- Deep Reinforcement Learning
- Combining Planning and Reinforcement Learning
- Further Challenges

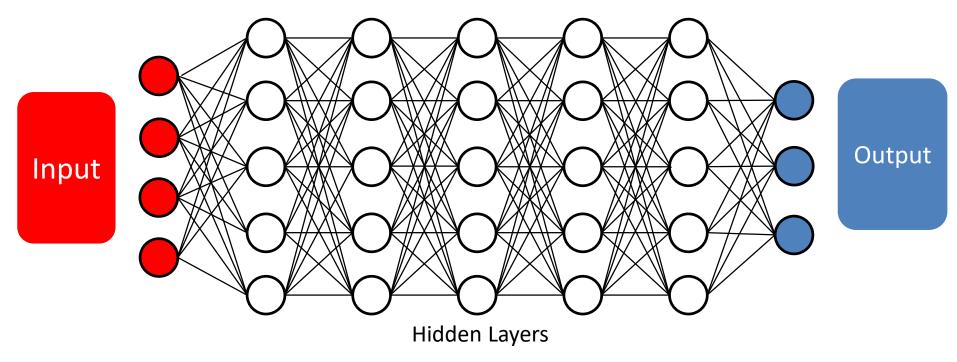
→ Deep Reinforcement Learning

Reinforcement Learning in Practice

- Focus on Model-Free Reinforcement Learning
- **Problem:** How to approximate π^* , V^* and/or Q^* for *each state*?
- Tabular Methods do not scale well with large state and action spaces
- Use Function Approximation instead:
 - Linear Combination of Features
 - Decision Tree / Forest
 - Nearest Neighbor
 - Neural Network
 - ...

Deep Learning

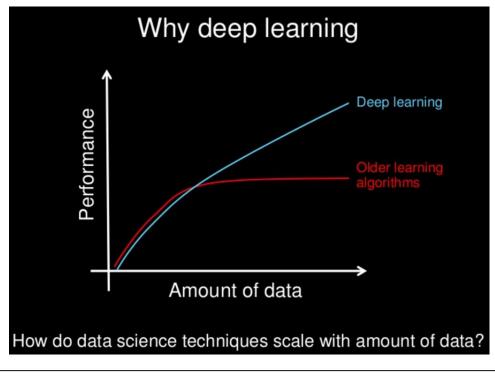
• **Deep Learning:** Neural Network with multiple hidden layers



- Enables end-to-end learning (feature learning + mapping) of tasks
- Typically trained with Stochastic Gradient Descent
- Works well for many complex tasks but hard to interpret

Why Deep Learning for Reinforcement Learning?

- Reinforcement Learning typically requires large amount of experience / data to solve complex problems (with large state and action spaces)
- Deep Learning scales well with large amount of data



Andrew Ng, What data scientistis should know about deep learning, 2015

Model Free Deep Reinforcement Learning

- Approximate π^* , V^* and/or Q^* with Neural Networks (and weights θ)
- Approximate $\pi^*: S \to \mathcal{A}$ with $\hat{\pi}_{\theta}$:

State
$$\implies$$
 $\hat{\pi}_{\theta}$ \implies Actions

• Approximate $V^*: S \to \mathbb{R}$ with \hat{V}_{θ} :

State
$$\longrightarrow$$
 \hat{V}_{θ} \longrightarrow State Value

• Approximate $Q^*: S \times \mathcal{A} \to \mathbb{R}$ with \hat{Q}_{θ} :

State
$$\widehat{Q}_{\theta}$$
 \xrightarrow{Action} OR State \widehat{Q}_{θ} $\stackrel{i}{\longrightarrow}$ $\hat{Q}_{\theta}(s_t, a_1)$
Action $\stackrel{i}{\longrightarrow}$ $\hat{Q}_{\theta}(s_t, a_n)$

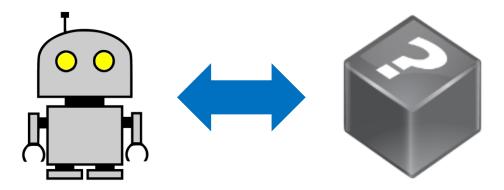
Prof. Dr. C. Linnhoff-Popien, André Ebert, Thomy Phan, Robert Müller, Steffen Illium - Praktikum Mobile und Verteilte Systeme

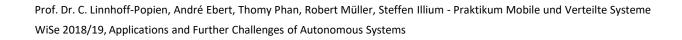
WiSe 2018/19, Applications and Further Challenges of Autonomous Systems

8

Challenges of Deep Reinforcement Learning

- Large amount of (real-world) data required
- Correlation in Data (Overfitting/Oscillation)
- Non-Stationary Data Distribution
- Computational and Memory Resources
- Consideration of safety, risk, and uncertainty





Example: Deep Q-Learning

• Approximate $Q^*: S \times A \to \mathbb{R}$ with Deep Q-Network \hat{Q}_{θ}

State
$$\widehat{Q}_{\theta}$$
 $\stackrel{\longrightarrow}{\longrightarrow}$ $\widehat{Q}_{\theta}(s_t, a_1)$
 $\stackrel{\cdots}{\longrightarrow}$ $\widehat{Q}_{\theta}(s_t, a_n)$

- Use experience buffer *D* to store the last *N* experience samples
- After each time step:
 - Store $e_t = \langle s_t, a_t, r_t, s_{t+1} \rangle$ in D
 - Sample random minibatch of n_{batch} experience samples to generate TD-targets:

$$y_t = r_t + \gamma \max_{a_{t+1} \in \mathcal{A}} \hat{Q}_{\theta}(s_{t+1}, a_{t+1})$$

- Perform stochastic gradient descent on $\langle s_t, y_t \rangle$ -pairs

Example: Improvements of Deep Q-Learning

• Use second network $\hat{Q}_{\theta^{-}}$ to temporarily "freeze" TD targets:

$$y_t = r_t + \gamma \max_{a_{t+1} \in \mathcal{A}} \hat{Q}_{\theta} - (s_{t+1}, a_{t+1})$$

target network prediction

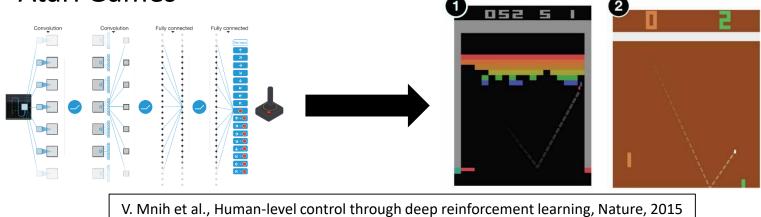
- Periodically set $\theta^- = \theta$, after *C* time steps (or soft update with $\alpha \in [0,1]$: $\theta^- = (1 - \alpha)\theta^- + \alpha\theta$)
- Prioritize experience sampling according to TD error
- More variants:
 - Deep Recurrent Q-Network
 - Dueling Deep Q-Network
 - Distributional Deep Q-Network

Prof. Dr. C. Linnhoff-Popien, André Ebert, Thomy Phan, Robert Müller, Steffen Illium - Praktikum Mobile und Verteilte Systeme

WiSe 2018/19, Applications and Further Challenges of Autonomous Systems

Success of Model-Free Deep Reinforcement Learning

Atari Games



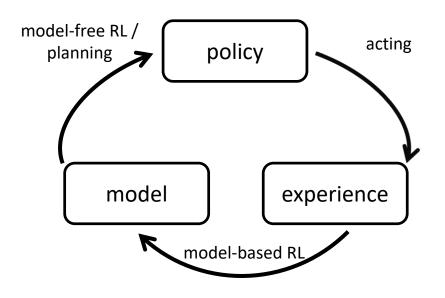
• OpenAl Five

https://blog.openai.com/openai-five/

→ Combining Planning and Reinforcement Learning

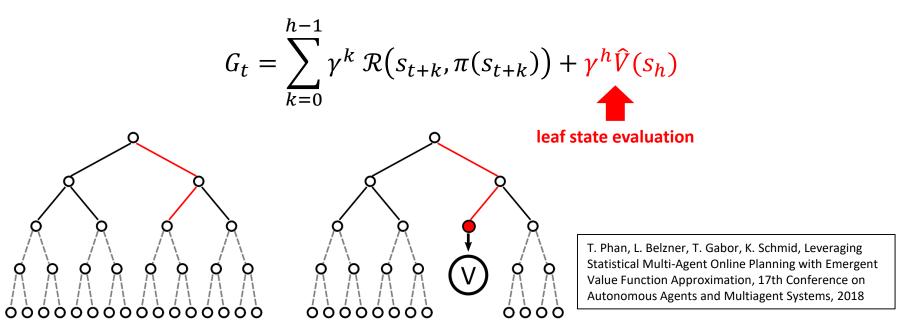
Dyna Architecture

- Learn value function / policy from simulated and actual experience
- Learn model from actual experience ۲
- Sample experience from model



Online Planning with Reduced Search Depth

- Online Planning usually has strict real-time requirements
 - limited computation budget
 - limited horizon
- **Problem:** how to evaluate actions and states with limited horizon *h*?
- Use learned value function \hat{V} to evaluate leaf states, e.g.



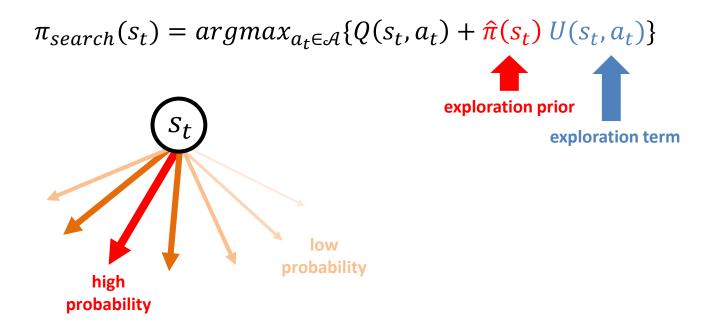
Prof. Dr. C. Linnhoff-Popien, André Ebert, Thomy Phan, Robert Müller, Steffen Illium - Praktikum Mobile und Verteilte Systeme

WiSe 2018/19, Applications and Further Challenges of Autonomous Systems

15

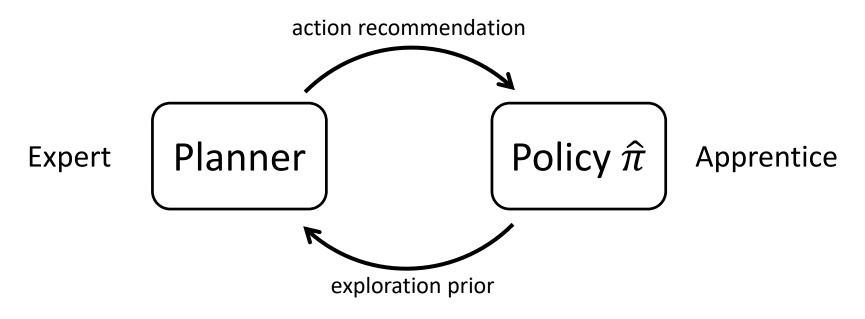
Online Planning with Reduced Search Breadth

- Online Planning usually has strict real-time requirements
 - limited computation budget
 - limited horizon
- **Problem:** how to search with limited computation budget?
- Use learned policy $\hat{\pi}$ to recommend actions for exploration, e.g.



Expert Iteration

- Learn policy $\hat{\pi}$ from action recommendations of a model-based planning algorithm
- Improve model-based planner by using $\hat{\pi}$ as exploration prior



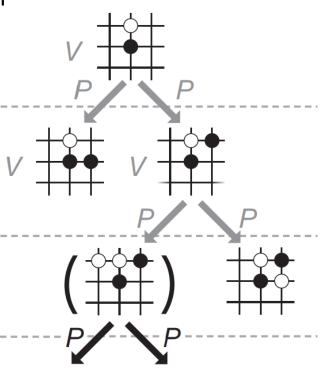
Supervised learning without human knowledge (beyond model)

Prof. Dr. C. Linnhoff-Popien, André Ebert, Thomy Phan, Robert Müller, Steffen Illium - Praktikum Mobile und Verteilte Systeme

WiSe 2018/19, Applications and Further Challenges of Autonomous Systems

Success Story

- AlphaGo Zero and AlphaZero
 - Monte Carlo Tree Search enhanced with neural networks to play Go, Chess and Shogi
 - Uses policy approximation $\hat{\pi}$ to bias node selection
 - Uses value function approximation \hat{V} to evaluate nodes
- Alpha(Go)Zero learns $\hat{\pi}$ and \hat{V} entirely from self-play
 - Only requires a generative model (rules, opponent model)
 - No human labeled data required



D. Silver et al., Mastering the game of go without human knowledge, Nature, 2017

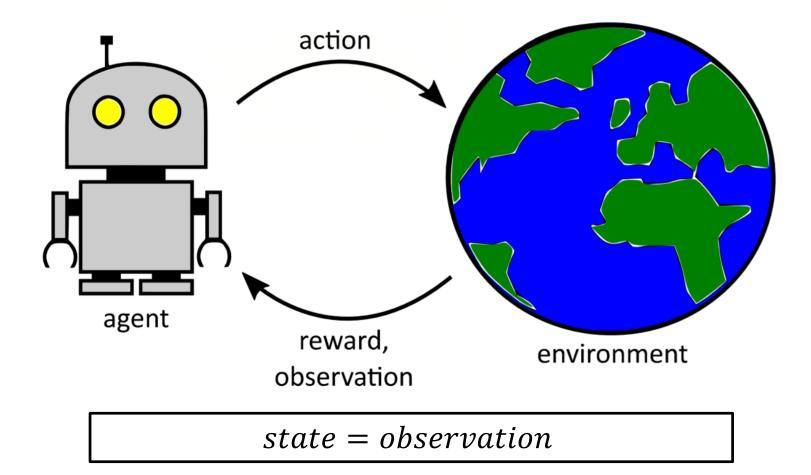
18

Prof. Dr. C. Linnhoff-Popien, André Ebert, Thomy Phan, Robert Müller, Steffen Illium - Praktikum Mobile und Verteilte Systeme

WiSe 2018/19, Applications and Further Challenges of Autonomous Systems

→ Further Challenges

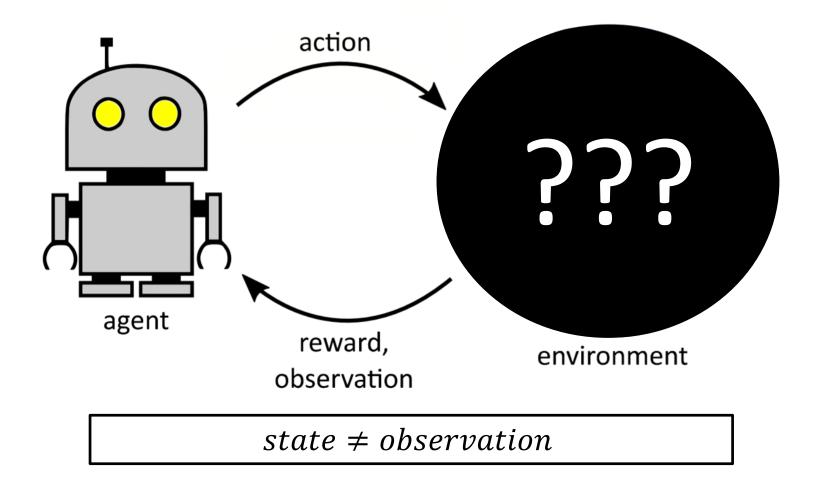
Partially Observable Environments



Prof. Dr. C. Linnhoff-Popien, André Ebert, Thomy Phan, Robert Müller, Steffen Illium - Praktikum Mobile und Verteilte Systeme

WiSe 2018/19, Applications and Further Challenges of Autonomous Systems

Partially Observable Environments

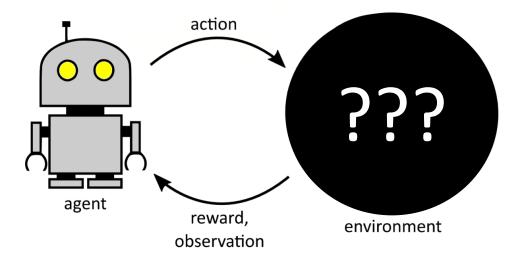


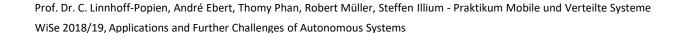
Prof. Dr. C. Linnhoff-Popien, André Ebert, Thomy Phan, Robert Müller, Steffen Illium - Praktikum Mobile und Verteilte Systeme

WiSe 2018/19, Applications and Further Challenges of Autonomous Systems

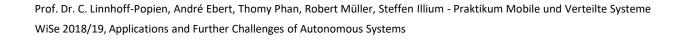
Definition

- A Partially Observable MDP (POMDP) is defined as $M = \langle S, A, P, R, O, \Omega \rangle$:
 - S, A, P, R same as in MDPs
 - \mathcal{O} is a (finite) set of observations
 - $\begin{array}{l} \ \Omega(o_{t+1}|s_{t+1},a_t) \in [0,1] \text{ is the probability for observating } o_{t+1} \in \mathcal{O} \\ \text{ when executing } a_t \in \mathcal{A} \text{ and transitioning to } s_{t+1} \in \mathcal{S} \end{array}$



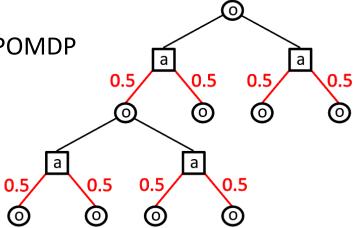


- States $s_t \in S$ cannot be identified with observations $o_t \in O$:
 - Condition policy on **history** $h_t = [a_0, o_1, ..., a_{t-1}, o_t]$ of actions and observations instead
 - Maintain **belief state** $b_{h_t}(s_t)$ (probability distribution over $s_t \in S$)
 - Environment can be modeled as *history* or *belief state MDP*
- **Goal:** Find an *optimal policy* π^* which maximizes the expected return for each history or belief state
 - Curse of dimensionality: belief state space \mathcal{B} scales exponentially with the state space \mathcal{S} .
 - Curse of history: number of possible histories scales exponentially with the horizon length of the problem.

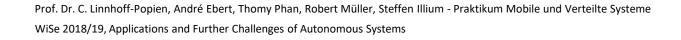


Scalable POMDP Solutions

- Monte Carlo Planning
 - Requires generative model $\widehat{M} \approx M$ of POMDP
 - Use \widehat{M} for belief state approximation
 - (e.g., particle filter)
 - Use \widehat{M} to construct tree of histories



- Deep Recurrent Reinforcement Learning
 - Use Recurrent Neural Networks to train DQN on observationsequences (histories!)
 - Basically the same mechanisms as DQN for MDPs (experience replay, target network, etc.)



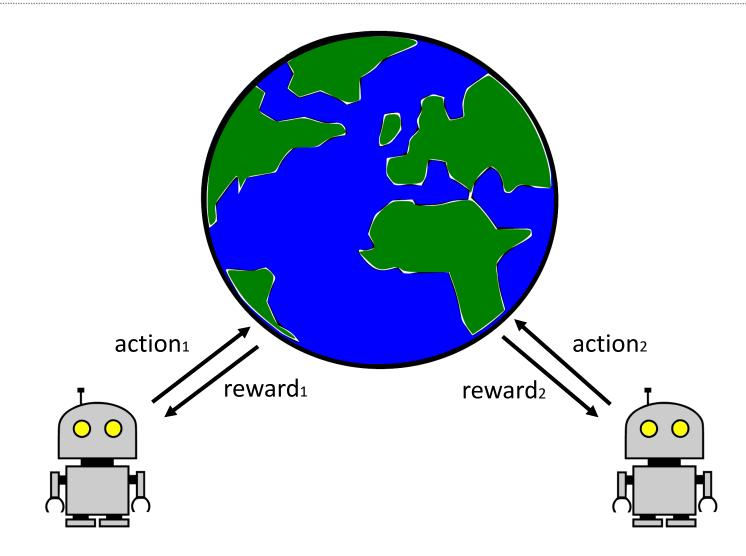
Temporal Abstraction

- Real-world problems are often complex at different levels
- Humans often divide larger tasks into subtasks or subgoals which can be solved individually
 - Problem can be solved **top-down** by selecting subtasks
 - Problem can be solved **bottom-up** by solving subtasks
- Example: Navigation Task
 - Subtasks: reach object X
 - Select order of subtasks to be solved (high-level policy)
 - Solve subtasks, deal with low-level uncertainty, etc. (low-level policy)

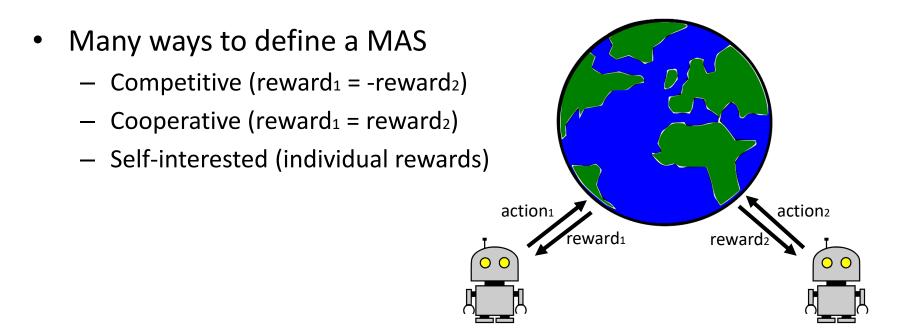
Temporal Abstraction Challenges

- Specification of Subtasks
- Specification of (Sub)Policies
- Granularity
- Model Specification (for Planning)

Multi-Agent Systems (MAS)



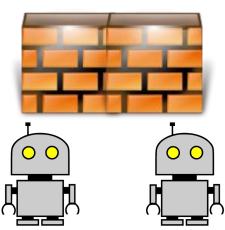
MAS Definitions



- In MAS, actions of other agents have influence on the own reward
 - Non-stationarity (agents adapt according to own behavior)
 - Decentralized adaptation requires coordination!

MAS Example

- Cooperative MAS with two mobile agents
- Both agents need to avoid an obstacle while maintaining formation



L. Busoniu et al., A comprehensive survey of multiagent reinforcement learning, IEEE Transactions on Systems, Man, And Cybernetics-Part C: Applications and Reviews, 2008.

Agent 1

• Reward matrix:

Reward	left ₂	straight ₂	right ₂
left ₁	10	-5	0
$straight_1$	-5	-10	-5
right ₁	-10	-5	10

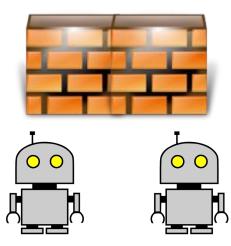
Prof. Dr. C. Linnhoff-Popien, André Ebert, Thomy Phan, Robert Müller, Steffen Illium - Praktikum Mobile und Verteilte Systeme

Agent 2

WiSe 2018/19, Applications and Further Challenges of Autonomous Systems

MAS Challenges

- Extremely High Complexity
- Credit Assignment (in cooperative MAS)
- Non-Stationarity
- Partial Observability



Outline

- An Introduction to Autonomous Systems
 - Motivation, Definition and Challenges
 - Artificial Intelligence
- Decision Making in Autonomous Systems
 - Markov Decision Processes
 - Planning
 - Reinforcement Learning

Applications and Further Challenges

- Deep Reinforcement Learning
- Combining Planning and Reinforcement Learning
- Further Challenges

We are going to offer **new courses** in the summer semester!

- Lecture: Intelligent Systems
- **Practical Course:** Autonomous Systems

Thank you!