

Praktikum Mobile und Verteilte Systeme

Outdoor Positioning

Prof. Dr. Claudia Linnhoff-Popien André Ebert, Sebastian Feld, Thomy Phan http://www.mobile.ifi.lmu.de

Sommersemester 2018

Outdoor Positioning

Today:

- 1. History of Positioning
- 2. Positioning Fundamentals
- 3. GPS Global Positioning System
 - System architecture
 - Positioning via GPS

4. Galileo

- System architecture
- Enhancements and new services
- 5. Other Global Navigation Satellite Systems (GNSS)

1. History of Positioning I

- Magnetic Compass (<5th Century in China, then 13th Century in Europe)
- Octant, then Sextant (18th Century): measurement of height of objects (sun, stars) above horizon, maximum height gives latitude
- Chronometer (maritime clock) with +/- 1s stability per day (Harrison, 1761), important for longitude determination
 - 1 second error means a 450 m longitude error at the equator (caused by the rotation of the earth)
- With Sextant/Octant best position accuracy is 1 NM

www.landandsealocation.com

1. History of Positioning II

- In 1714, following many maritime accidents (including more than 1500 vanished sailors with the loss of the fleet of admiral Clowdisley Shovell in 1707), the British government settled the **longitude act** to offer a 20.000 pounds reward (more than today's 10 millions €) for a method to determine the longitude.
- Expected accuracy (drift):
 - Maximum error: 0,5 degrees
 - 0,5 degrees = 30 nautical miles at the equator
 - = motion during 2 minutes of earth rotation
 - = 3 seconds per day during 40 days

(40 days = a 6 week journey from England to the West Indies)

Anno Regni

1. History of Positioning III

- John Harrison (1693 1776)
- Drift on H4 clock: 39.2 seconds after 47 days (4 times better than what was requested)

H2 (1741)

H4 (1761) 13cm 1.45 kg

2. Positioning Fundamentals – Components

Positioning is determined by

- one or several parameters observed by measurement methods
- a positioning method for position calculation
- a descriptive or spatial reference system
- an infrastructure
- protocols and messages for coordinating positioning

Positioning method	Observable	Measured by
Proximity sensing	Cell-ID, coordinates, RSS	Sensing for pilot signals
Lateration	Range or Range difference	Traveling time of pilot signals Path loss of pilot signals Traveling time difference of pilot signals
	Range difference	Path loss difference of pilot signals
Angulation	Angle	Antenna arrays
Dead reckoning	Position and Direction of motion and Velocity and Distance	Any other positioning method and sensors: Gyroscope Accelerometer Odometer
Pattern matching or learning algorithms	Visual images or fingerprints	e.g., via Camera or Received signal strength

Proximity Sensing

Proximity is sensed by a station using (short) range pilot signals:

Lateration

 Position is computed by a number of range measurements to known fixpoints:

Angulation

 Position is derived by the measured of the angle of an arriving signal by multiple stations at known fix-points:

Dead Reckoning

- From a **fixed starting position**, the movement of a mobile device is estimated (e.g., using velocity and direction of movement)
- Position becomes more inaccurate with each estimation
- Recalibration may be necessary

Fingerprinting

 Position is derived by the comparison of location dependent online measurements with previously recorded data:

Indoor Navigation / Fingerprinting via RSS measurements

2.1 Positioning Fundamentals – Reference Systems

- Goal of positioning: derive the geographic position of a target with respect to a spatial reference model
- Spatial reference model
 - Coordinate system (Ellipsoidal/Cartesian)
 - Geodetic datum, e.g., WGS-84
 - Projection (if location is to be represented on a map), e.g., Mercator projection

2.2 Positioning Fundamentals - Infrastructures

3. Global Satellite Positioning Systems in the past

- Russian satellite Sputnik launched in 1957
 - Proof of the ability to track artificial objects in space via short wave radio signals
 - Worldwide triangulation program (BC-4): simultaneously photographing reflective satellites by several sites separated by some 4000 km
 - Doppler shift in the signal broadcast by a satellite could be used to determine exact time of closest approach. Together with the ephemerides this leads to precise positioning anywhere in the world.
- Navy Navigation Satellite System (NNSS), also called TRANSIT
 - Predecessor of GPS
 - Six satellites / 1100km altitude
 - Primarily for vessel and aircraft positioning
 - 1m accuracy if point was occupied for several days
 - A satellite passed overhead only every 90 minutes

3. GPS – Mission Goals

- Defined by the US Department of Defense (DoD), developed to replace the TRANSIT system and to deliver not only position, but also accurate time and speed.
- Initial goals
 - User receiver cost < 10.000 \$ and "5 bombs in the same hole"
 - Positioning anywhere, continuously & in all weather conditions
- Services
 - Standard positioning service (SPS) open to civil users, but single-frequency with L1 coarse/acquisition signal 1575.42 MHz, i.e. no ionosphere effect correction, selective availability
 - Precise positioning service (PPS), dual-frequency, using P(Y) signals in L1 and L2 (1227.60 MHz) bands, with military control access (key for pseudo-code)

3.1 GPS - History

1973	Decision to develop satellite navigation system
1978-1985	11 Block-I satellites launched
1989	First Block-II satellite launched
Dec 1993	Initial Operational Capability (IOC)
Mar 1994	Last Block-II satellite
July 1995	Full Operational Capability (FOC)
May 2000	Deactivation of Selective Availability
Sep 2005	First IIR-M GPS satellite

3.2 GPS - Satellites

Geostationary orbit (ca. 36.000 km) communication, TV, and meterology

MEO: Medium Earth Orbit e.g., **GPS satellites** (ca. 20.200 km)

LEO: Low Earth Orbit e.g., **ISS** (ca. 700 km)

3.2 GPS - Satellites

- Block-I
 - Weight: 845 kg; Lifespan: 4.5 years;
 - Energy: Solar panels (400W); Nickel-Cadium batteries
 - Out-of-order since 1996
- Block-II/-IIA
 - Weight: 1500kg; Lifespan: 7.5 years; Wingspan: 5.1m
 - Four atomic clocks (2 rubidium, 2 cesium)
- Block-IIR
 - Weight: 2000kg; Costs: 75 million USD
 - Three atomic clocks (all rubidium clocks)
 - Second civil signal (L2C)
 - New military signal with new code
- Block-IIF
 - Third frequency for civil use (L5)

3.3 GPS – Components

Space segment

- 24 satellites circulating the Earth every 12 sidereal hours on six orbits
- Each satellite is equipped with onboard atomic clocks
- Orbits are equally spaced 60° apart from each other with an inclination angle of 55° to the equator
- Orbit altitude: approx. 20,180 km

Control segment

- Initially: Five ground stations for monitoring and controlling the satellites
- In 2005: Six additional monitoring stations
- Adjust or synchronize satellites

User Segment

- GPS receiver
- Applications: land, sea, and air navigation, as well as military purposes and location-based services

3.4 GPS - Circular Lateration

Known:

- Position $p_i = (x_i, y_i, z_i)$ for satellites $i \in \{1, 2, 3, 4\}$ at time t_i

- Inaccurate reception time tr_i
- Speed of light c
- Unknown:
 - Position p
- Calculation:
 - $r_i = (tr_i t_i)*c \text{ for } i = 1,2,3$
 - Estimate position p_{est} : intersection of spheres (centered on satellite i with radius r_{ij}
 - p_{est} contains the coordinates (x,y,z) and ist determined on basis of the signals 1,2, and 3
 - p_{est} is **not accurate** due to different clock times at the satellites and the receiver
 - Signal 4 is now used to determine the corrected reception time t

3.5 GPS - Possible Errors

- Satellite clocks (although four highly accurate atomic clocks) can cause time error of 10ns
- Satellite position is only known up to approx. 1-5m
- Receiver has only limited accuracy
- Multipath propagation
- Satellite geometry (Dilution Of Precision, DOP)
- Signal (speed of light) slow down when crossing ionosphere and troposphere

ionosphere

3.6 Differential GPS (DGPS)

- Reference station (RS) located at a known and accurately surveyed point
- RS determines its GPS position using four or more satellites
- Deviation of the measured position to the actual position can be calculated
- Variations are valid for all the GPS receivers around the RS

Runtime corrections are transmitted by radio

3.7 Satellite-based Augmentation Systems

4. Galileo

- European GNSS
- Publicly available since December 2016
- Independence of other systems
- More services: Open, Commercial, Safety of Life, Public Regulated, Search and Rescue
- Advantages
 - Precision: Combination of GPS and Galileo in dual receivers is about to lead to higher precision
 - Availability: Higher number of satellites to improve the availability.
 - Coverage: Galileo aims to provide a better coverage at high latitudes due to the location and inclination of the satellites.

4.1 Galileo – Services

Open Service

basic signal provided free-of-charge

Safety-of-Life Service

 Enhanced signal including an integrity function that will warn the user within a few seconds in case of a malfunction. This service will be offered to the safety-critical transport community, aviation, etc.

Commercial Service

 combination of two encrypted signals for higher data throughput rate and higher accuracy authenticated data;

Public Regulated Service

 two encrypted signals with controlled access for specific users like governmental bodies; security against manipulation, availability garanties

Search And Rescue Service

 Galileo will contribute to the international COSPAS-SARSAT cooperative system for humanitarian search and rescue activities. Each satellite will be equipped with a transponder transferring the distress signal from the user to the Rescue Coordination Centre and informing him that his situation has been detected.

http://ec.europa.eu/enterprise/policies/satnav/galileo/programme/index_en.htm

4.2 Galileo – Operation

- Galileo programme structured in two phases
 - In-Orbit Validation (IOV) phase
 - Qualifying and validating the systems through in-orbit tests
 - Two experimental satellites: Dec 2005, Apr 2008
 - Four operational satellites: Q3/4 2011, Q1/2 2012
 - Full Operational Capability (FOC) phase
 - Deployment of remaining ground and space infrastructure
 - Intermediate initial operational capability: 18 satellites in operation
 - Full system: 30 satellites, control centers located in Europe and a network of sensor stations and uplink stations installed around the globe

4.3 Galileo – Architecture

- 30 satellites in MEO: Each satellite will contain
 - a navigation payload
 - search and rescue transponder
- 30-40 sensor stations
- 3 control centers
- 9 Mission Uplink stations
- 5 TT&C stations.

http://ec.europa.eu/enterprise/policies/satnav/galileo/programme/index_en.htm

5. Other GNSS

- Global Navigation Satellite System (GLONASS)
 - Program started in 1982
 - System currently operated by the Russian Defense Ministry
 - 24 planned satellites
 - 3 orbital levels
 - Orbital altitude of 19,100 km
 - Full operation since 1996
- Compass Navigation Satellite System (CNSS)
 - China's second-generation satellite navigation system (also known as BeiDou 2)
 - Long-term goal: Development of as system similar to the GPS and GLONASS
 - 25~35 satellites: 4 GEO satellites and MEO satellites
 - Two levels of positioning service: Open and restricted (military)
 - Coverage: Initially only neighboring countries, later on extension to global navigation satellite system.
 - Launches: 1 MEO (Apr 07) and 3 GEO (Apr 09 June 10)

Hands-on

- Create location-based applications with Android location services
 - Android Developer tutorials
 https://developer.android.com/guide/topics/location/strategies
 - Get familiar with typical challenges:
 - Multitude of location sources
 - User Movement
 - Varying accuracy
 - Applying an application process chain satisfying your application's individual needs (e.g., demands for accuracy or update-rate):

Source: https://developer.android.com/guide/topics/location/strategies